I am developing an app where I compare two images using matchShapes() of OpenCV.
I implemented the method in Objective-C code is below
- (void) someMethod:(UIImage *)image :(UIImage *)temp {
RNG rng(12345);
cv::Mat src_base, hsv_base;
cv::Mat src_test1, hsv_test1;
src_base = [self cvMatWithImage:image];
src_test1 = [self cvMatWithImage:temp];
int thresh=150;
double ans=0, result=0;
Mat imageresult1, imageresult2;
cv::cvtColor(src_base, hsv_base, cv::COLOR_BGR2HSV);
cv::cvtColor(src_test1, hsv_test1, cv::COLOR_BGR2HSV);
std::vector<std::vector<cv::Point>>contours1, contours2;
std::vector<Vec4i>hierarchy1, hierarchy2;
Canny(hsv_base, imageresult1, thresh, thresh*2);
Canny(hsv_test1, imageresult2, thresh, thresh*2);
findContours(imageresult1,contours1,hierarchy1,CV_RETR_TREE,CV_CHAIN_APPROX_SIMPLE,cvPoint(0,0));
for(int i=0;i<contours1.size();i++)
{
Scalar color=Scalar(rng.uniform(0, 255), rng.uniform(0,255), rng.uniform(0,255));
drawContours(imageresult1,contours1,i,color,1,8,hierarchy1,0,cv::Point());
}
findContours(imageresult2,contours2,hierarchy2,CV_RETR_TREE,CV_CHAIN_APPROX_SIMPLE,cvPoint(0,0));
for(int i=0;i<contours2.size();i++)
{
Scalar color=Scalar(rng.uniform(0, 255), rng.uniform(0,255), rng.uniform(0,255));
drawContours(imageresult2,contours2,i,color,1,8,hierarchy2,0,cv::Point());
}
for(int i=0;i<contours1.size();i++)
{
ans = matchShapes(contours1[i],contours2[i],CV_CONTOURS_MATCH_I1,0);
std::cout<<ans<<" ";
getchar();
}
}
I got those results but do not know what exactly those numbers mean: 0 0 0.81946 0.816337 0.622353 0.634221 0
this blogpost I think should give a lot more insight into how matchShapes works.
You obviously already know what the input parameters are but for anyone finding this that doesn't:
The output is a metric where:
The findings on the blogpost mentioned are as follows: ( max = 1 , min = 0)
This basically shows that for your results:
If my computer vision learnings have taught me anything is always be sceptical of a complete match unless you are 100% using the same images.
Edit1: I think it might also be rotationally invarient so in your case you might have three very similar drawn lines that have been rotated to the same way (i.e. horizontal) and compared