I have a dataset of time-series examples. I want to calculate the similarity between various time-series examples, however I do not want to take into account differences due to scaling (i.e. I want to look at similarities in the shape of the time-series, not their absolute value). So, to this end, I need a way of normalizing the data. That is, making all of the time-series examples fall between a certain region e.g [0,100]. Can anyone tell me how this can be done in python
相关问题
- how to define constructor for Python's new Nam
- streaming md5sum of contents of a large remote tar
- How to get the background from multiple images by
- Evil ctypes hack in python
- Correctly parse PDF paragraphs with Python
I'm not going to give the Python code, but the definition of normalizing, is that for every value (datapoint) you calculate "(value-mean)/stdev". Your values will not fall between 0 and 1 (or 0 and 100) but I don't think that's what you want. You want to compare the variation. Which is what you are left with if you do this.
Assuming that your timeseries is an array, try something like this:
This will confine your values between 0 and 1
The solutions given are good for a series that aren’t incremental nor decremental(stationary). In financial time series( or any other series with a a bias) the formula given is not right. It should, first be detrended or perform a scaling based in the latest 100-200 samples.
And if the time series doesn't come from a normal distribution ( as is the case in finance) there is advisable to apply a non linear function ( a standard CDF funtion for example) to compress the outliers.
Aronson and Masters book (Statistically sound Machine Learning for algorithmic trading) uses the following formula ( on 200 day chunks ):
V = 100 * N ( 0.5( X -F50)/(F75-F25)) -50
Where:
X : data point
F50 : mean of the latest 200 points
F75 : percentile 75
F25 : Percentile 25
N : normal CDF
Following my previous comment, here it is a (not optimized) python function that does scaling and/or normalization: ( it needs a pandas DataFrame as input, and it’s doesn’t check that, so it raises errors if supplied with another object type. If you need to use a list or numpy.array you need to modify it. But you could convert those objects to pandas.DataFrame() first.
This function is slow, so it’s advisable run it just once and store the results.
You can take a look here normalize-standardize-time-series-data-python and sklearn.preprocessing.minmax_scale