Adding column if it does not exist

2020-06-30 08:46发布

I have a bunch of data frames with different variables. I want to read them into R and add columns to those that are short of a few variables so that they all have a common set of standard variables, even if some are unobserved.

In other words... Is there a way to add columns of NA in the tidyverse when a column does not exist? My current attempt works for adding new variables where the column doesn't exist (top_speed) but fails when the column already exists (mpg) (it sets all observations to the first value, Mazda RX4).

library(tidyverse)
mtcars %>%
  tbl_df() %>%
  rownames_to_column("car") %>%
  mutate(top_speed = ifelse("top_speed" %in% names(.), top_speed, NA),
         mpg = ifelse("mpg" %in% names(.), mpg, NA)) %>%
  select(car, top_speed, mpg, everything())

# # A tibble: 32 x 13
#                  car top_speed   mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
#                <chr>     <lgl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#  1         Mazda RX4        NA    21     6 160.0   110  3.90 2.620 16.46     0     1     4     4
#  2     Mazda RX4 Wag        NA    21     6 160.0   110  3.90 2.875 17.02     0     1     4     4
#  3        Datsun 710        NA    21     4 108.0    93  3.85 2.320 18.61     1     1     4     1
#  4    Hornet 4 Drive        NA    21     6 258.0   110  3.08 3.215 19.44     1     0     3     1
#  5 Hornet Sportabout        NA    21     8 360.0   175  3.15 3.440 17.02     0     0     3     2
#  6           Valiant        NA    21     6 225.0   105  2.76 3.460 20.22     1     0     3     1
#  7        Duster 360        NA    21     8 360.0   245  3.21 3.570 15.84     0     0     3     4
#  8         Merc 240D        NA    21     4 146.7    62  3.69 3.190 20.00     1     0     4     2
#  9          Merc 230        NA    21     4 140.8    95  3.92 3.150 22.90     1     0     4     2
# 10          Merc 280        NA    21     6 167.6   123  3.92 3.440 18.30     1     0     4     4

7条回答
聊天终结者
2楼-- · 2020-06-30 09:20

Try the following,

library(tidyverse)

mtcars %>%
  tbl_df() %>%
  rownames_to_column("car") %>%
  mutate(top_speed = if ("top_speed" %in% names(.)){return(top_speed)}else{return(NA)},
         mpg = if ("mpg" %in% names(.)){return(mpg)}else{return(NA)}) %>%
  select(car, top_speed, mpg, everything())
# A tibble: 32 x 13
                 car top_speed   mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
               <chr>     <lgl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
 1         Mazda RX4        NA  21.0     6 160.0   110  3.90 2.620 16.46     0     1     4     4
 2     Mazda RX4 Wag        NA  21.0     6 160.0   110  3.90 2.875 17.02     0     1     4     4
 3        Datsun 710        NA  22.8     4 108.0    93  3.85 2.320 18.61     1     1     4     1
 4    Hornet 4 Drive        NA  21.4     6 258.0   110  3.08 3.215 19.44     1     0     3     1
 5 Hornet Sportabout        NA  18.7     8 360.0   175  3.15 3.440 17.02     0     0     3     2
 6           Valiant        NA  18.1     6 225.0   105  2.76 3.460 20.22     1     0     3     1
 7        Duster 360        NA  14.3     8 360.0   245  3.21 3.570 15.84     0     0     3     4
 8         Merc 240D        NA  24.4     4 146.7    62  3.69 3.190 20.00     1     0     4     2
 9          Merc 230        NA  22.8     4 140.8    95  3.92 3.150 22.90     1     0     4     2
10          Merc 280        NA  19.2     6 167.6   123  3.92 3.440 18.30     1     0     4     4
# ... with 22 more rows

I think the ifelse() doesn't inherit the class from the object.

查看更多
放我归山
3楼-- · 2020-06-30 09:24

You can use the rowwise function like this :

library(tidyverse)
mtcars %>%
  tbl_df() %>%
  rownames_to_column("car") %>%
  rowwise() %>%
  mutate(top_speed = ifelse("top_speed" %in% names(.), top_speed, NA),
         mpg = ifelse("mpg" %in% names(.), mpg, NA)) %>%
  select(car, top_speed, mpg, everything())
查看更多
爷、活的狠高调
4楼-- · 2020-06-30 09:25

If you already have a dataframe with all the required columns, say

library(tidyverse)  

df_with_required_columns = 
      mtcars %>% 
      mutate(top_speed = NA_real_) %>%
      select(top_speed, mpg)

then you can simply bind_rows filtering out all the rows:

mtcars %>%
  rownames_to_column("car") %>%
  bind_rows( df_with_required_columns %>% filter(F) ) %>%
  select(car, top_speed, mpg, everything())

Note that missing columns will take the type from df_with_required_columns.

查看更多
Viruses.
5楼-- · 2020-06-30 09:27

Another option that does not require creating a helper function (or an already complete data.frame) using tibble's add_column:

library(tibble)

cols <- c(top_speed = NA_real_, nhj = NA_real_, mpg = NA_real_)

add_column(mtcars, !!!cols[setdiff(names(cols), names(mtcars))])
查看更多
做个烂人
6楼-- · 2020-06-30 09:27

You can bind columns of the new data.frame with a fake complete data.frame filled with NA, rename the duplicated columns, and then filter only the original names.

# your default complete vector of col names
standard.variables = names(mtcars)
# prep
default=mtcars %>% mutate_all(.funs=function(x) NA)
# treat with a data.frame missing 3 columns
test=mtcars %>% select(-mpg, -disp, -am)
bind_cols(test, default) %>% setNames(make.names(names(.), unique=TRUE)) %>% 
  select_(.dots=standard.variables) %>% head(2)
####    mpg cyl disp  hp drat    wt  qsec vs am gear carb
#### 1  NA   6   NA 110  3.9 2.620 16.46  0 NA    4    4
#### 2  NA   6   NA 110  3.9 2.875 17.02  0 NA    4    4
查看更多
够拽才男人
7楼-- · 2020-06-30 09:28

If you had an empty dataframe that contains all the names to check for, you can use bind_rows to add columns.

I used purrr:map_dfr to make the empty tibble with the appropriate column names.

columns = c("top_speed", "mpg") %>%
     map_dfr( ~tibble(!!.x := logical() ) )

# A tibble: 0 x 2
# ... with 2 variables: top_speed <lgl>, mpg <lgl>

bind_rows(columns, mtcars)

# A tibble: 32 x 12
   top_speed   mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
       <lgl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
 1        NA  21.0     6 160.0   110  3.90 2.620 16.46     0     1     4     4
 2        NA  21.0     6 160.0   110  3.90 2.875 17.02     0     1     4     4
 3        NA  22.8     4 108.0    93  3.85 2.320 18.61     1     1     4     1
查看更多
登录 后发表回答