I am running caret's neural network on the Bike Sharing dataset and I get the following error message:
In nominalTrainWorkflow(x = x, y = y, wts = weights, info = trainInfo, : There were missing values in resampled performance measures.
I am not sure what the problem is. Can anyone help please?
The dataset is from: https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
Here is the coding:
library(caret)
library(bestNormalize)
data_hour = read.csv("hour.csv")
# Split dataset
set.seed(3)
split = createDataPartition(data_hour$casual, p=0.80, list=FALSE)
validation = data_hour[-split,]
dataset = data_hour[split,]
dataset = dataset[,c(-1,-2,-4)]
# View strucutre of data
str(dataset)
# 'data.frame': 13905 obs. of 14 variables:
# $ season : int 1 1 1 1 1 1 1 1 1 1 ...
# $ mnth : int 1 1 1 1 1 1 1 1 1 1 ...
# $ hr : int 1 2 3 5 8 10 11 12 14 15 ...
# $ holiday : int 0 0 0 0 0 0 0 0 0 0 ...
# $ weekday : int 6 6 6 6 6 6 6 6 6 6 ...
# $ workingday: int 0 0 0 0 0 0 0 0 0 0 ...
# $ weathersit: int 1 1 1 2 1 1 1 1 2 2 ...
# $ temp : num 0.22 0.22 0.24 0.24 0.24 0.38 0.36 0.42 0.46 0.44 ...
# $ atemp : num 0.273 0.273 0.288 0.258 0.288 ...
# $ hum : num 0.8 0.8 0.75 0.75 0.75 0.76 0.81 0.77 0.72 0.77 ...
# $ windspeed : num 0 0 0 0.0896 0 ...
# $ casual : int 8 5 3 0 1 12 26 29 35 40 ...
# $ registered: int 32 27 10 1 7 24 30 55 71 70 ...
# $ cnt : int 40 32 13 1 8 36 56 84 106 110 ...
## transform numeric data to Guassian
dataset_selected = dataset[,c(-13,-14)]
for (i in 8:12) { dataset_selected[,i] = predict(boxcox(dataset_selected[,i] +0.1))}
# View transformed dataset
str(dataset_selected)
#'data.frame': 13905 obs. of 12 variables:
#' $ season : int 1 1 1 1 1 1 1 1 1 1 ...
#' $ mnth : int 1 1 1 1 1 1 1 1 1 1 ...
#' $ hr : int 1 2 3 5 8 10 11 12 14 15 ...
#' $ holiday : int 0 0 0 0 0 0 0 0 0 0 ...
#' $ weekday : int 6 6 6 6 6 6 6 6 6 6 ...
#' $ workingday: int 0 0 0 0 0 0 0 0 0 0 ...
#' $ weathersit: int 1 1 1 2 1 1 1 1 2 2 ...
#' $ temp : num -1.47 -1.47 -1.35 -1.35 -1.35 ...
#' $ atemp : num -1.18 -1.18 -1.09 -1.27 -1.09 ...
#' $ hum : num 0.899 0.899 0.637 0.637 0.637 ...
#' $ windspeed : num -1.8 -1.8 -1.8 -0.787 -1.8 ...
#' $ casual : num -0.361 -0.588 -0.81 -1.867 -1.208 ...
# Train data with Neural Network model from caret
control = trainControl(method = 'repeatedcv', number = 10, repeats =3)
metric = 'RMSE'
set.seed(3)
fit = train(casual ~., data = dataset_selected, method = 'nnet', metric = metric, trControl = control, trace = FALSE)
Thanks for your help!
phivers comment is spot on, however I would still like to provide a more verbose answer on this concrete example.
In order to investigate what is going on in more detail one should add the argument
savePredictions = "all"
totrainControl
:now when running:
we notice the problem occurs when
decay = 0
.lets filter the observations and predictions for
decay = 0
we can observe that all of the predictions when
decay == 0
are the same (have zero variance). The model exclusively predicts 0:So when the summary function tries to predict R squared:
The answer by @missuse is already very insightful to understand why this error happens.
So I just want to add some straightforward ways how to get rid of this error.
If in some cross-validation folds the predictions get zero variance, the model didn't converge. In such cases, you can try the neuralnet package which offers two parameters you can tune:
In most cases, it is sufficient to change the threshold parameter like this:
Answer by @topepo (Caret package main developer). See detailed Github thread here.