I know how to load a model into a container and also I know that we can create a static config file and when we run a tensorflow serving container pass it to the container and later use one the models inside that config files but I want to know if there is any way to hot load a completely new model (not a newer version of the previous model) into a running tensorflow serving container. What I mean is we run the container with model-A and later we load model-B into the container and use it, can we do this? If yes how?
相关问题
- batch_dot with variable batch size in Keras
- How to use Reshape keras layer with two None dimen
- CV2 Image Error: error: (-215:Assertion failed) !s
- Why keras use “call” instead of __call__?
- How to conditionally scale values in Keras Lambda
相关文章
- tensorflow 神经网络 训练集准确度远高于验证集和测试集准确度?
- Tensorflow: device CUDA:0 not supported by XLA ser
- Numpy array to TFrecord
- conditional graph in tensorflow and for loop that
- How to downgrade to cuda 10.0 in arch linux?
- Apply TensorFlow Transform to transform/scale feat
- How to force tensorflow tensors to be symmetric?
- keras model subclassing examples
You can.
First you need to copy the new model files to
model_base_path
you specified when launching the tf serve, so that the server can see the new model. The directory layout is usually this: $MODEL_BASE_PATH/$model_a/$version_a/* and $MODEL_BASE_PATH/$model_b/$version_b/*Then you need to refresh the tf serve with a new model_config_file that includes the entry for the new model. See here on how to add entries to the model config file. To make the server take in the new config, there are two ways to do it: