I am looking for a fast way to compute a rolling-sum, possibly using Numpy. Here is my first approach:
def func1(M, w):
Rtn = np.zeros((M.shape[0], M.shape[1]-w+1))
for i in range(M.shape[1]-w+1):
Rtn[:,i] = np.sum(M[:, i:w+i], axis=1)
return Rtn
M = np.array([[0., 0., 0., 0., 0., 1., 1., 0., 1., 1., 1., 0., 0.],
[0., 0., 1., 0., 1., 0., 0., 0., 0., 0., 0., 1., 1.],
[1., 1., 0., 1., 0., 0., 0., 1., 0., 0., 0., 0., 0.]])
window_size = 4
print func1(M, window_size)
[[ 0. 0. 1. 2. 2. 3. 3. 3. 3. 2.]
[ 1. 2. 2. 1. 1. 0. 0. 0. 1. 2.]
[ 3. 2. 1. 1. 1. 1. 1. 1. 0. 0.]]
I wanted to prevent the window (/sum) from being redone in the loop and hopefully make it much faster so I came up with the following function which limits the sum to only the first and last elements of the rolling window:
def func2(M, w):
output = np.zeros((M.shape[0], M.shape[1]-w+1))
sum = np.sum(M[:, 0:w], axis=1)
output[:,0] = sum
for i in range(w, M.shape[1]):
sum = sum + M[:,i]- M[:,i-w]
output[:,i-w+1] = sum
return output
But to my surprise, func2 is barely faster than func1:
In [251]:
M = np.random.randint(2, size=3000).reshape(3, 1000)
window_size = 100
%timeit func1(M, window_size)
10 loops, best of 3: 20.9 ms per loop
In [252]:
%timeit func2(M, w)
10 loops, best of 3: 15.5 ms per loop
Am I missing something here? Do you guys know a better, I mean faster way to achieve this?
Adapted from @Jaime's answer here: https://stackoverflow.com/a/14314054/553404
Output
Timings