What is the fastest way to transpose a matrix in C

2019-01-01 09:50发布

I have a matrix (relatively big) that I need to transpose. For example assume that my matrix is

a b c d e f
g h i j k l
m n o p q r 

I want the result be as follows:

a g m
b h n
c I o
d j p
e k q
f l r

What is the fastest way to do this?

8条回答
浪荡孟婆
2楼-- · 2019-01-01 10:53

my answer is transposed of 3x3 matrix

 #include<iostream.h>

#include<math.h>


main()
{
int a[3][3];
int b[3];
cout<<"You must give us an array 3x3 and then we will give you Transposed it "<<endl;
for(int i=0;i<3;i++)
{
    for(int j=0;j<3;j++)
{
cout<<"Enter a["<<i<<"]["<<j<<"]: ";

cin>>a[i][j];

}

}
cout<<"Matrix you entered is :"<<endl;

 for (int e = 0 ; e < 3 ; e++ )

{
    for ( int f = 0 ; f < 3 ; f++ )

        cout << a[e][f] << "\t";


    cout << endl;

    }

 cout<<"\nTransposed of matrix you entered is :"<<endl;
 for (int c = 0 ; c < 3 ; c++ )
{
    for ( int d = 0 ; d < 3 ; d++ )
        cout << a[d][c] << "\t";

    cout << endl;
    }

return 0;
}
查看更多
只靠听说
3楼-- · 2019-01-01 10:54

Some details about transposing 4x4 square float (I will discuss 32-bit integer later) matrices with x86 hardware. It's helpful to start here in order to transpose larger square matrices such as 8x8 or 16x16.

_MM_TRANSPOSE4_PS(r0, r1, r2, r3) is implemented differently by different compilers. GCC and ICC (I have not checked Clang) use unpcklps, unpckhps, unpcklpd, unpckhpd whereas MSVC uses only shufps. We can actually combine these two approaches together like this.

t0 = _mm_unpacklo_ps(r0, r1);
t1 = _mm_unpackhi_ps(r0, r1);
t2 = _mm_unpacklo_ps(r2, r3);
t3 = _mm_unpackhi_ps(r2, r3);

r0 = _mm_shuffle_ps(t0,t2, 0x44);
r1 = _mm_shuffle_ps(t0,t2, 0xEE);
r2 = _mm_shuffle_ps(t1,t3, 0x44);
r3 = _mm_shuffle_ps(t1,t3, 0xEE);

One interesting observation is that two shuffles can be converted to one shuffle and two blends (SSE4.1) like this.

t0 = _mm_unpacklo_ps(r0, r1);
t1 = _mm_unpackhi_ps(r0, r1);
t2 = _mm_unpacklo_ps(r2, r3);
t3 = _mm_unpackhi_ps(r2, r3);

v  = _mm_shuffle_ps(t0,t2, 0x4E);
r0 = _mm_blend_ps(t0,v, 0xC);
r1 = _mm_blend_ps(t2,v, 0x3);
v  = _mm_shuffle_ps(t1,t3, 0x4E);
r2 = _mm_blend_ps(t1,v, 0xC);
r3 = _mm_blend_ps(t3,v, 0x3);

This effectively converted 4 shuffles into 2 shuffles and 4 blends. This uses 2 more instructions than the implementation of GCC, ICC, and MSVC. The advantage is that it reduces port pressure which may have a benefit in some circumstances. Currently all the shuffles and unpacks can go only to one particular port whereas the blends can go to either of two different ports.

I tried using 8 shuffles like MSVC and converting that into 4 shuffles + 8 blends but it did not work. I still had to use 4 unpacks.

I used this same technique for a 8x8 float transpose (see towards the end of that answer). https://stackoverflow.com/a/25627536/2542702. In that answer I still had to use 8 unpacks but I manged to convert the 8 shuffles into 4 shuffles and 8 blends.

For 32-bit integers there is nothing like shufps (except for 128-bit shuffles with AVX512) so it can only be implemented with unpacks which I don't think can be convert to blends (efficiently). With AVX512 vshufi32x4 acts effectively like shufps except for 128-bit lanes of 4 integers instead of 32-bit floats so this same technique might be possibly with vshufi32x4 in some cases. With Knights Landing shuffles are four times slower (throughput) than blends.

查看更多
登录 后发表回答