How to detect whether there is a specific member v

2019-01-01 09:47发布

For creating algorithm template function I need to know whether x or X (and y or Y) in class that is template argument. It may by useful when using my function for MFC CPoint class or GDI+ PointF class or some others. All of them use different x in them. My solution could be reduces to the following code:


template<int> struct TT {typedef int type;};
template<class P> bool Check_x(P p, typename TT<sizeof(&P::x)>::type b = 0) { return true; }
template<class P> bool Check_x(P p, typename TT<sizeof(&P::X)>::type b = 0) { return false; }

struct P1 {int x; };
struct P2 {float X; };
// it also could be struct P3 {unknown_type X; };

int main()
{
    P1 p1 = {1};
    P2 p2 = {1};

    Check_x(p1); // must return true
    Check_x(p2); // must return false

    return 0;
}

But it does not compile in Visual Studio, while compiling in the GNU C++. With Visual Studio I could use the following template:


template<class P> bool Check_x(P p, typename TT<&P::x==&P::x>::type b = 0) { return true; }
template<class P> bool Check_x(P p, typename TT<&P::X==&P::X>::type b = 0) { return false; }

But it does not compile in GNU C++. Is there universal solution?

UPD: Structures P1 and P2 here are only for example. There are could be any classes with unknown members.

P.S. Please, do not post C++11 solutions here because they are obvious and not relevant to the question.

10条回答
皆成旧梦
2楼-- · 2019-01-01 10:25

I got redirected here from a question which has been closed as a duplicate of this one. I know it's an old thread, but I just wanted to suggest an alternative (simpler?) implementation that works with C++11. Supposing we want to check whether a certain class has a member variable called id:

#include <type_traits>

template<typename T, typename = void>
struct has_id : std::false_type { };

template<typename T>
struct has_id<T, decltype(std::declval<T>().id, void())> : std::true_type { };

That's it. And here is how it would be used (live example):

#include <iostream>

using namespace std;

struct X { int id; };
struct Y { int foo; };

int main()
{
    cout << boolalpha;
    cout << has_id<X>::value << endl;
    cout << has_id<Y>::value << endl;
}

Things can be made even simpler with a couple of macros:

#define DEFINE_MEMBER_CHECKER(member) \
    template<typename T, typename V = bool> \
    struct has_ ## member : false_type { }; \
    template<typename T> \
    struct has_ ## member<T, \
        typename enable_if< \
            !is_same<decltype(declval<T>().member), void>::value, \
            bool \
            >::type \
        > : true_type { };

#define HAS_MEMBER(C, member) \
    has_ ## member<C>::value

Which could be used this way:

using namespace std;

struct X { int id; };
struct Y { int foo; };

DEFINE_MEMBER_CHECKER(foo)

int main()
{
    cout << boolalpha;
    cout << HAS_MEMBER(X, foo) << endl;
    cout << HAS_MEMBER(Y, foo) << endl;
}
查看更多
看风景的人
3楼-- · 2019-01-01 10:31

Why don't you just create template specializations of Check_x ?

template<> bool Check_x(P1 p) { return true; }
template<> bool Check_x(P2 p) { return false; }

Heck, when I think of it. If you only have two types, why do you even need templates for this?

查看更多
与风俱净
4楼-- · 2019-01-01 10:33

UPDATE: I've recently done some more with the code I posted in my original answer, so I'm updating this to account for changes/additions.

Here are some usage snippets: *The guts for all this are farther down

Check for member x in a given class. Could be var, func, class, union, or enum:

CREATE_MEMBER_CHECK(x);
bool has_x = has_member_x<class_to_check_for_x>::value;

Check for member function void x():

//Func signature MUST have T as template variable here... simpler this way :\
CREATE_MEMBER_FUNC_SIG_CHECK(x, void (T::*)(), void__x);
bool has_func_sig_void__x = has_member_func_void__x<class_to_check_for_x>::value;

Check for member variable x:

CREATE_MEMBER_VAR_CHECK(x);
bool has_var_x = has_member_var_x<class_to_check_for_x>::value;

Check for member class x:

CREATE_MEMBER_CLASS_CHECK(x);
bool has_class_x = has_member_class_x<class_to_check_for_x>::value;

Check for member union x:

CREATE_MEMBER_UNION_CHECK(x);
bool has_union_x = has_member_union_x<class_to_check_for_x>::value;

Check for member enum x:

CREATE_MEMBER_ENUM_CHECK(x);
bool has_enum_x = has_member_enum_x<class_to_check_for_x>::value;

Check for any member function x regardless of signature:

CREATE_MEMBER_CHECK(x);
CREATE_MEMBER_VAR_CHECK(x);
CREATE_MEMBER_CLASS_CHECK(x);
CREATE_MEMBER_UNION_CHECK(x);
CREATE_MEMBER_ENUM_CHECK(x);
CREATE_MEMBER_FUNC_CHECK(x);
bool has_any_func_x = has_member_func_x<class_to_check_for_x>::value;

OR

CREATE_MEMBER_CHECKS(x);  //Just stamps out the same macro calls as above.
bool has_any_func_x = has_member_func_x<class_to_check_for_x>::value;

Details and core:

/*
    - Multiple inheritance forces ambiguity of member names.
    - SFINAE is used to make aliases to member names.
    - Expression SFINAE is used in just one generic has_member that can accept
      any alias we pass it.
*/

template <typename... Args> struct ambiguate : public Args... {};

template<typename A, typename = void>
struct got_type : std::false_type {};

template<typename A>
struct got_type<A> : std::true_type {
    typedef A type;
};

template<typename T, T>
struct sig_check : std::true_type {};

template<typename Alias, typename AmbiguitySeed>
struct has_member {
    template<typename C> static char ((&f(decltype(&C::value))))[1];
    template<typename C> static char ((&f(...)))[2];

    //Make sure the member name is consistently spelled the same.
    static_assert(
        (sizeof(f<AmbiguitySeed>(0)) == 1)
        , "Member name specified in AmbiguitySeed is different from member name specified in Alias, or wrong Alias/AmbiguitySeed has been specified."
    );

    static bool const value = sizeof(f<Alias>(0)) == 2;
};

Macros (El Diablo!):

CREATE_MEMBER_CHECK:

//Check for any member with given name, whether var, func, class, union, enum.
#define CREATE_MEMBER_CHECK(member)                                         \
                                                                            \
template<typename T, typename = std::true_type>                             \
struct Alias_##member;                                                      \
                                                                            \
template<typename T>                                                        \
struct Alias_##member <                                                     \
    T, std::integral_constant<bool, got_type<decltype(&T::member)>::value>  \
> { static const decltype(&T::member) value; };                             \
                                                                            \
struct AmbiguitySeed_##member { char member; };                             \
                                                                            \
template<typename T>                                                        \
struct has_member_##member {                                                \
    static const bool value                                                 \
        = has_member<                                                       \
            Alias_##member<ambiguate<T, AmbiguitySeed_##member>>            \
            , Alias_##member<AmbiguitySeed_##member>                        \
        >::value                                                            \
    ;                                                                       \
}

CREATE_MEMBER_VAR_CHECK:

//Check for member variable with given name.
#define CREATE_MEMBER_VAR_CHECK(var_name)                                   \
                                                                            \
template<typename T, typename = std::true_type>                             \
struct has_member_var_##var_name : std::false_type {};                      \
                                                                            \
template<typename T>                                                        \
struct has_member_var_##var_name<                                           \
    T                                                                       \
    , std::integral_constant<                                               \
        bool                                                                \
        , !std::is_member_function_pointer<decltype(&T::var_name)>::value   \
    >                                                                       \
> : std::true_type {}

CREATE_MEMBER_FUNC_SIG_CHECK:

//Check for member function with given name AND signature.
#define CREATE_MEMBER_FUNC_SIG_CHECK(func_name, func_sig, templ_postfix)    \
                                                                            \
template<typename T, typename = std::true_type>                             \
struct has_member_func_##templ_postfix : std::false_type {};                \
                                                                            \
template<typename T>                                                        \
struct has_member_func_##templ_postfix<                                     \
    T, std::integral_constant<                                              \
        bool                                                                \
        , sig_check<func_sig, &T::func_name>::value                         \
    >                                                                       \
> : std::true_type {}

CREATE_MEMBER_CLASS_CHECK:

//Check for member class with given name.
#define CREATE_MEMBER_CLASS_CHECK(class_name)               \
                                                            \
template<typename T, typename = std::true_type>             \
struct has_member_class_##class_name : std::false_type {};  \
                                                            \
template<typename T>                                        \
struct has_member_class_##class_name<                       \
    T                                                       \
    , std::integral_constant<                               \
        bool                                                \
        , std::is_class<                                    \
            typename got_type<typename T::class_name>::type \
        >::value                                            \
    >                                                       \
> : std::true_type {}

CREATE_MEMBER_UNION_CHECK:

//Check for member union with given name.
#define CREATE_MEMBER_UNION_CHECK(union_name)               \
                                                            \
template<typename T, typename = std::true_type>             \
struct has_member_union_##union_name : std::false_type {};  \
                                                            \
template<typename T>                                        \
struct has_member_union_##union_name<                       \
    T                                                       \
    , std::integral_constant<                               \
        bool                                                \
        , std::is_union<                                    \
            typename got_type<typename T::union_name>::type \
        >::value                                            \
    >                                                       \
> : std::true_type {}

CREATE_MEMBER_ENUM_CHECK:

//Check for member enum with given name.
#define CREATE_MEMBER_ENUM_CHECK(enum_name)                 \
                                                            \
template<typename T, typename = std::true_type>             \
struct has_member_enum_##enum_name : std::false_type {};    \
                                                            \
template<typename T>                                        \
struct has_member_enum_##enum_name<                         \
    T                                                       \
    , std::integral_constant<                               \
        bool                                                \
        , std::is_enum<                                     \
            typename got_type<typename T::enum_name>::type  \
        >::value                                            \
    >                                                       \
> : std::true_type {}

CREATE_MEMBER_FUNC_CHECK:

//Check for function with given name, any signature.
#define CREATE_MEMBER_FUNC_CHECK(func)          \
template<typename T>                            \
struct has_member_func_##func {                 \
    static const bool value                     \
        = has_member_##func<T>::value           \
        && !has_member_var_##func<T>::value     \
        && !has_member_class_##func<T>::value   \
        && !has_member_union_##func<T>::value   \
        && !has_member_enum_##func<T>::value    \
    ;                                           \
}

CREATE_MEMBER_CHECKS:

//Create all the checks for one member.  Does NOT include func sig checks.
#define CREATE_MEMBER_CHECKS(member)    \
CREATE_MEMBER_CHECK(member);            \
CREATE_MEMBER_VAR_CHECK(member);        \
CREATE_MEMBER_CLASS_CHECK(member);      \
CREATE_MEMBER_UNION_CHECK(member);      \
CREATE_MEMBER_ENUM_CHECK(member);       \
CREATE_MEMBER_FUNC_CHECK(member)
查看更多
十年一品温如言
5楼-- · 2019-01-01 10:33

Why don't you use specialization like this:

struct P1 {int x; };
struct P2 {int X; };

template<class P> 
bool Check_x(P p) { return true; }

template<> 
bool Check_x<P2>(P2 p) { return false; }
查看更多
低头抚发
6楼-- · 2019-01-01 10:33

The second answer (litb's) to this shows how to detect a member:

Is it possible to write a template to check for a function's existence?

查看更多
永恒的永恒
7楼-- · 2019-01-01 10:34

Here is a solution simpler than Johannes Schaub - litb's one. It requires C++11.

#include <type_traits>

template <typename T, typename = int>
struct HasX : std::false_type { };

template <typename T>
struct HasX <T, decltype((void) T::x, 0)> : std::true_type { };

Update: A quick example and the explanation on how this works.

For these types:

struct A { int x; };
struct B { int y; };

we have HasX<A>::value == true and HasX<B>::value == false. Let's see why.

First recall that std::false_type and std::true_type have a static constexpr bool member named value which is set to false and true, respectively. Hence, the two templates HasX above inherit this member. (The first template from std::false_type and the second one from std::true_type.)

Let's start simple and then proceed step by step until we get to the code above.

1) Starting point:

template <typename T, typename U>
struct HasX : std::false_type { };

In this case, there's no surprise: HasX derives from std::false_type and hence HasX<bool, double>::value == false and HasX<bool, int>::value == false.

2) Defaulting U:

// Primary template
template <typename T, typename U = int>
struct HasX : std::false_type { };

Given that U defaults to int, Has<bool> actually means HasX<bool, int> and thus, HasX<bool>::value == HasX<bool, int>::value == false.

3) Adding a specialization:

// Primary template
template <typename T, typename U = int>
struct HasX : std::false_type { };

// Specialization for U = int
template <typename T>
struct HasX<T, int> : std::true_type { };

In general, thanks to the primary template, HasX<T, U> derives from std::false_type. However, there exists a specialization for U = int which derives from std::true_type. Therefore, HasX<bool, double>::value == false but HasX<bool, int>::value == true.

Thanks to the default for U, HasX<bool>::value == HasX<bool, int>::value == true.

4) decltype and a fancy way to say int:

A little digression here but, please, bear with me.

Basically (this is not entirely correct), decltype(expression) yields the type of expression. For instance, 0 has type int thus, decltype(0) means int. Analogously, 1.2 has type double and thus, decltype(1.2) means double.

Consider a function with this declaration:

char func(foo, int);

where foo is some class type. If f is an object of type foo, then decltype(func(f, 0)) means char (the type returned by func(f, 0)).

Now, the expression (1.2, 0) uses the (built-in) comma operator which evaluates the two sub-expressions in order (that is, first 1.2 and then 0), discards the first value and results in the second one. Hence,

int x = (1.2, 0);

is equivalent to

int x = 0;

Putting this together with decltype gives that decltype(1.2, 0) means int. There's nothing really special about 1.2 or double here. For instance, true has type bool and decltype(true, 0) means int as well.

What about a class type? For instace, what does decltype(f, 0) mean? It's natural to expect that this still means int but it might not be the case. Indeed, there might be an overload for the comma operator similar to the function func above that takes a foo and an int and returns a char. In this case, decltype(foo, 0) is char.

How can we avoid the use of a overload for the comma operator? Well, there's no way to overload the comma operator for a void operand and we can cast anything to void. Therefore, decltype((void) f, 0) means int. Indeed, (void) f casts f from foo to void which basically does nothing but saying that the expression must be considered as having type void. Then the built-in operator comma is used and ((void) f, 0) results in 0 which has type int. Hence, decltype((void) f, 0) means int.

Is this cast really necessary? Well, if there's no overload for the comma operator taking foo and int then this isn't necessary. We can always inspect the source code to see if there's such operator or not. However, if this appear in a template and f has type V which is a template parameter, then it's no longer clear (or even impossible to know) whether such overload for the comma operator exists or not. To be generic we cast anyway.

Bottom line: decltype((void) f, 0) is a fancy way to say int.

5) SFINAE:

This is a whole science ;-) OK I'm exagerating but it's not very simple either. So I'll keep the explanation to the bare minimum.

SFINAE stands for Substitution Failure is Not An Error. It means that when a template parameter is substituted by a type, an illegal C++ code might appear but, in some circunstances, instead of aborting compilation the compiler simply ignores the offending code as if it wasn't there. Let's see how it applies to our case:

// Primary template
template <typename T, typename U = int>
struct HasX : std::false_type { };

// Specialization for U = int
template <typename T>
struct HasX <T, decltype((void) T::x, 0)> : std::true_type { };

Here, again, decltype((void) T::x, 0) is a fancy way to say int but with the benefit of SFINAE.

When T is substituted with a type, an invalid construct might appear. For instance, bool::x is not valid C++, so substituting T with bool in T::x yields an invalid construct. Under the SFINAE principle, the compiler doesn't reject the code, it simply ignores (parts of) it. More precisely, as we have seenHasX<bool> means actually HasX<bool, int>. The specialization for U = int should be selected but, while instantiating it, the compiler finds bool::x and ignores the template specialization altogether as if it didn't exist.

At this point, the code is essencially the same as in case (2) above where just the primary template exists. Hence, HasX<bool, int>::value == false.

The same argument used for bool holds for B since B::x is an invalid construct (B has no member x). However, A::x is OK and the compiler sees no issue in instantiating the specialization for U = int (or, more precisely, for U = decltype((void) A::x, 0)). Hence, HasX<A>::value == true.

6) Unnaming U:

Well, looking at the code in (5) again, we see that the name U is not used anywhere but in its declaration (typename U). We can then unname the second template argument and we obtain the code shown at the top of this post.

查看更多
登录 后发表回答