I am trying to find the fastest and most efficient way to calculate slopes using Numpy and Scipy. I have a data set of three Y variables and one X variable and I need to calculate their individual slopes. For example, I can easily do this one row at a time, as shown below, but I was hoping there was a more efficient way of doing this. I also don't think linregress is the best way to go because I don't need any of the auxiliary variables like intercept, standard error, etc in my results. Any help is greatly appreciated.
import numpy as np
from scipy import stats
Y = [[ 2.62710000e+11 3.14454000e+11 3.63609000e+11 4.03196000e+11
4.21725000e+11 2.86698000e+11 3.32909000e+11 4.01480000e+11
4.21215000e+11 4.81202000e+11]
[ 3.11612352e+03 3.65968334e+03 4.15442691e+03 4.52470938e+03
4.65011423e+03 3.10707392e+03 3.54692896e+03 4.20656404e+03
4.34233412e+03 4.88462501e+03]
[ 2.21536396e+01 2.59098311e+01 2.97401268e+01 3.04784552e+01
3.13667639e+01 2.76377113e+01 3.27846013e+01 3.73223417e+01
3.51249997e+01 4.42563658e+01]]
X = [ 1990. 1991. 1992. 1993. 1994. 1995. 1996. 1997. 1998. 1999.]
slope_0, intercept, r_value, p_value, std_err = stats.linregress(X, Y[0,:])
slope_1, intercept, r_value, p_value, std_err = stats.linregress(X, Y[1,:])
slope_2, intercept, r_value, p_value, std_err = stats.linregress(X, Y[2,:])
slope_0 = slope/Y[0,:][0]
slope_1 = slope/Y[1,:][0]
slope_2 = slope/Y[2,:][0]
b, a = polyfit(X, Y[1,:], 1)
slope_1_a = b/Y[1,:][0]
This clear one-liner should be efficient enough without scipy:
Finally you should get
Output is [1.54983152e+10 9.98749876e+01 1.84564349e+00]
The linear regression calculation is, in one dimension, a vector calculation. This means we can combine the multiplications on the entire Y matrix, and then vectorize the fits using the axis parameter in numpy. In your case that works out to the following
You're not interested in fit quality parameters but most of them can be obtained in a similar manner.