Plot normal distribution in 3D

2020-05-28 08:17发布

I am trying to plot the comun distribution of two normal distributed variables.

The code below plots one normal distributed variable. What would the code be for plotting two normal distributed variables?

import matplotlib.pyplot as plt
import numpy as np
import matplotlib.mlab as mlab
import math

mu = 0
variance = 1
sigma = math.sqrt(variance)
x = np.linspace(-3, 3, 100)
plt.plot(x,mlab.normpdf(x, mu, sigma))

plt.show()

3条回答
劫难
2楼-- · 2020-05-28 08:19

The following adaption to @Ianhi's code above returns a contour plot version of the 3D plot above.

import matplotlib.pyplot as plt
from matplotlib import style
style.use('fivethirtyeight')
import numpy as np
from scipy.stats import multivariate_normal




#Parameters to set
mu_x = 0
variance_x = 3

mu_y = 0
variance_y = 15

x = np.linspace(-10,10,500)
y = np.linspace(-10,10,500)
X,Y = np.meshgrid(x,y)

pos = np.array([X.flatten(),Y.flatten()]).T



rv = multivariate_normal([mu_x, mu_y], [[variance_x, 0], [0, variance_y]])


fig = plt.figure(figsize=(10,10))
ax0 = fig.add_subplot(111)
ax0.contour(rv.pdf(pos).reshape(500,500))



plt.show()

enter image description here

查看更多
老娘就宠你
3楼-- · 2020-05-28 08:45

It sounds like what you're looking for is a Multivariate Normal Distribution. This is implemented in scipy as scipy.stats.multivariate_normal. It's important to remember that you are passing a covariance matrix to the function. So to keep things simple keep the off diagonal elements as zero:

[X variance ,     0    ]
[     0     ,Y Variance]

Here is an example using this function and generating a 3D plot of the resulting distribution. I add the colormap to make seeing the curves easier but feel free to remove it.

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import multivariate_normal
from mpl_toolkits.mplot3d import Axes3D

#Parameters to set
mu_x = 0
variance_x = 3

mu_y = 0
variance_y = 15

#Create grid and multivariate normal
x = np.linspace(-10,10,500)
y = np.linspace(-10,10,500)
X, Y = np.meshgrid(x,y)
pos = np.empty(X.shape + (2,))
pos[:, :, 0] = X; pos[:, :, 1] = Y
rv = multivariate_normal([mu_x, mu_y], [[variance_x, 0], [0, variance_y]])

#Make a 3D plot
fig = plt.figure()
ax = fig.gca(projection='3d')
ax.plot_surface(X, Y, rv.pdf(pos),cmap='viridis',linewidth=0)
ax.set_xlabel('X axis')
ax.set_ylabel('Y axis')
ax.set_zlabel('Z axis')
plt.show()

Giving you this plot: enter image description here

Edit the method used below was deprecated in Matplotlib v2.2 and removed in v3.1

A simpler version is available through matplotlib.mlab.bivariate_normal It takes the following arguments so you don't need to worry about matrices matplotlib.mlab.bivariate_normal(X, Y, sigmax=1.0, sigmay=1.0, mux=0.0, muy=0.0, sigmaxy=0.0) Here X, and Y are again the result of a meshgrid so using this to recreate the above plot:

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.mlab import bivariate_normal
from mpl_toolkits.mplot3d import Axes3D

#Parameters to set
mu_x = 0
sigma_x = np.sqrt(3)

mu_y = 0
sigma_y = np.sqrt(15)

#Create grid and multivariate normal
x = np.linspace(-10,10,500)
y = np.linspace(-10,10,500)
X, Y = np.meshgrid(x,y)
Z = bivariate_normal(X,Y,sigma_x,sigma_y,mu_x,mu_y)

#Make a 3D plot
fig = plt.figure()
ax = fig.gca(projection='3d')
ax.plot_surface(X, Y, Z,cmap='viridis',linewidth=0)
ax.set_xlabel('X axis')
ax.set_ylabel('Y axis')
ax.set_zlabel('Z axis')
plt.show()

Giving: enter image description here

查看更多
Summer. ? 凉城
4楼-- · 2020-05-28 08:46

While the other answers are great, I wanted to achieve similar results while also illustrating the distribution with a scatter plot of the sample.

More details can be found here: Python 3d plot of multivariate gaussian distribution

The results looks like:

Bivariate gaussian distribution and sample plot

And is generated using the following code:

from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm
from scipy.stats import multivariate_normal


# Sample parameters
mu = np.array([0, 0])
sigma = np.array([[0.7, 0.2], [0.2, 0.3]])
rv = multivariate_normal(mu, sigma)
sample = rv.rvs(500)

# Bounds parameters
x_abs = 2.5
y_abs = 2.5
x_grid, y_grid = np.mgrid[-x_abs:x_abs:.02, -y_abs:y_abs:.02]

pos = np.empty(x_grid.shape + (2,))
pos[:, :, 0] = x_grid
pos[:, :, 1] = y_grid

levels = np.linspace(0, 1, 40)

fig = plt.figure()
ax = fig.gca(projection='3d')

# Removes the grey panes in 3d plots
ax.xaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))
ax.yaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))
ax.zaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))

# The heatmap
ax.contourf(x_grid, y_grid, 0.1 * rv.pdf(pos),
            zdir='z', levels=0.1 * levels, alpha=0.9)

# The wireframe
ax.plot_wireframe(x_grid, y_grid, rv.pdf(
    pos), rstride=10, cstride=10, color='k')

# The scatter. Note that the altitude is defined based on the pdf of the
# random variable
ax.scatter(sample[:, 0], sample[:, 1], 1.05 * rv.pdf(sample), c='k')

ax.legend()
ax.set_title("Gaussian sample and pdf")
ax.set_xlim3d(-x_abs, x_abs)
ax.set_ylim3d(-y_abs, y_abs)
ax.set_zlim3d(0, 1)

plt.show()
查看更多
登录 后发表回答