I am trying to generate an inverse Weibull distribution using parameters estimated from survreg in R. By this I mean I would like to, for a given probability (which will be a random number in a small simulation model implemented in MS Excel), return the expected time to failure using my parameters. I understand the general form for the inverse Weibull distribution to be:
X=b[-ln(1-rand())]^(1/a)
where a and b are shape and scale parameters respectively and X is the time to failure I want. My problem is in the interpretation of the intercept and covariate parameters from survreg. I have these parameters, the unit of time is days:
Value Std. Error z p
(Intercept) 7.79 0.2288 34.051 0.000
Group 2 -0.139 0.2335 -0.596 0.551
Log(scale) 0.415 0.0279 14.88 0.000
Scale= 1.51
Weibull distribution
Loglik(model)= -8356.7 Loglik(intercept only)= -8356.9
Chisq = 0.37 on 1 degrees of freedom, p= 0.55
Number of Newton-Raphson Iterations: 4
n=1682 (3 observations deleted due to missing values)
I have read in the help files that the coefficients from R are from the "extreme value distribution" but I'm unsure what this really means and how I get 'back to' the standard scale parameter used directly in the formulae. Using b=7.79 and a=1.51 gives nonsensical answers. I really want to be able to generate a time for both the base group and 'Group 2'. I also should note that I did not perform the analysis myself and cannot interrogate the data further.
The key is that the shape parameter the rweibull generates is the inverse of the shape parameter the survreg inputs
This is explained in the manual page,
?survreg
(in the "examples" section).