MySQL Great Circle Distance (Haversine formula)

2018-12-31 01:10发布

I've got a working PHP script that gets Longitude and Latitude values and then inputs them into a MySQL query. I'd like to make it solely MySQL. Here's my current PHP Code:

if ($distance != "Any" && $customer_zip != "") { //get the great circle distance

    //get the origin zip code info
    $zip_sql = "SELECT * FROM zip_code WHERE zip_code = '$customer_zip'";
    $result = mysql_query($zip_sql);
    $row = mysql_fetch_array($result);
    $origin_lat = $row['lat'];
    $origin_lon = $row['lon'];

    //get the range
    $lat_range = $distance/69.172;
    $lon_range = abs($distance/(cos($details[0]) * 69.172));
    $min_lat = number_format($origin_lat - $lat_range, "4", ".", "");
    $max_lat = number_format($origin_lat + $lat_range, "4", ".", "");
    $min_lon = number_format($origin_lon - $lon_range, "4", ".", "");
    $max_lon = number_format($origin_lon + $lon_range, "4", ".", "");
    $sql .= "lat BETWEEN '$min_lat' AND '$max_lat' AND lon BETWEEN '$min_lon' AND '$max_lon' AND ";
    }

Does anyone know how to make this entirely MySQL? I've browsed the Internet a bit but most of the literature on it is pretty confusing.

8条回答
情到深处是孤独
2楼-- · 2018-12-31 01:50

$greatCircleDistance = acos( cos($latitude0) * cos($latitude1) * cos($longitude0 - $longitude1) + sin($latitude0) * sin($latitude1));

with latitude and longitude in radian.

so

SELECT 
  acos( 
      cos(radians( $latitude0 ))
    * cos(radians( $latitude1 ))
    * cos(radians( $longitude0 ) - radians( $longitude1 ))
    + sin(radians( $latitude0 )) 
    * sin(radians( $latitude1 ))
  ) AS greatCircleDistance 
 FROM yourTable;

is your SQL query

to get your results in Km or miles, multiply the result with the mean radius of Earth (3959 miles,6371 Km or 3440 nautical miles)

The thing you are calculating in your example is a bounding box. If you put your coordinate data in a spatial enabled MySQL column, you can use MySQL's build in functionality to query the data.

SELECT 
  id
FROM spatialEnabledTable
WHERE 
  MBRWithin(ogc_point, GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))'))
查看更多
浮光初槿花落
3楼-- · 2018-12-31 01:52

I have written a procedure that can calculate the same, but you have to enter the latitude and longitude in the respective table.

drop procedure if exists select_lattitude_longitude;

delimiter //

create procedure select_lattitude_longitude(In CityName1 varchar(20) , In CityName2 varchar(20))

begin

    declare origin_lat float(10,2);
    declare origin_long float(10,2);

    declare dest_lat float(10,2);
    declare dest_long float(10,2);

    if CityName1  Not In (select Name from City_lat_lon) OR CityName2  Not In (select Name from City_lat_lon) then 

        select 'The Name Not Exist or Not Valid Please Check the Names given by you' as Message;

    else

        select lattitude into  origin_lat from City_lat_lon where Name=CityName1;

        select longitude into  origin_long  from City_lat_lon where Name=CityName1;

        select lattitude into  dest_lat from City_lat_lon where Name=CityName2;

        select longitude into  dest_long  from City_lat_lon where Name=CityName2;

        select origin_lat as CityName1_lattitude,
               origin_long as CityName1_longitude,
               dest_lat as CityName2_lattitude,
               dest_long as CityName2_longitude;

        SELECT 3956 * 2 * ASIN(SQRT( POWER(SIN((origin_lat - dest_lat) * pi()/180 / 2), 2) + COS(origin_lat * pi()/180) * COS(dest_lat * pi()/180) * POWER(SIN((origin_long-dest_long) * pi()/180 / 2), 2) )) * 1.609344 as Distance_In_Kms ;

    end if;

end ;

//

delimiter ;
查看更多
低头抚发
4楼-- · 2018-12-31 01:55

If you add helper fields to the coordinates table, you can improve response time of the query.

Like this:

CREATE TABLE `Coordinates` (
`id` INT(10) UNSIGNED NOT NULL COMMENT 'id for the object',
`type` TINYINT(4) UNSIGNED NOT NULL DEFAULT '0' COMMENT 'type',
`sin_lat` FLOAT NOT NULL COMMENT 'sin(lat) in radians',
`cos_cos` FLOAT NOT NULL COMMENT 'cos(lat)*cos(lon) in radians',
`cos_sin` FLOAT NOT NULL COMMENT 'cos(lat)*sin(lon) in radians',
`lat` FLOAT NOT NULL COMMENT 'latitude in degrees',
`lon` FLOAT NOT NULL COMMENT 'longitude in degrees',
INDEX `lat_lon_idx` (`lat`, `lon`)
)    

If you're using TokuDB, you'll get even better performance if you add clustering indexes on either of the predicates, for example, like this:

alter table Coordinates add clustering index c_lat(lat);
alter table Coordinates add clustering index c_lon(lon);

You'll need the basic lat and lon in degrees as well as sin(lat) in radians, cos(lat)*cos(lon) in radians and cos(lat)*sin(lon) in radians for each point. Then you create a mysql function, smth like this:

CREATE FUNCTION `geodistance`(`sin_lat1` FLOAT,
                              `cos_cos1` FLOAT, `cos_sin1` FLOAT,
                              `sin_lat2` FLOAT,
                              `cos_cos2` FLOAT, `cos_sin2` FLOAT)
    RETURNS float
    LANGUAGE SQL
    DETERMINISTIC
    CONTAINS SQL
    SQL SECURITY INVOKER
   BEGIN
   RETURN acos(sin_lat1*sin_lat2 + cos_cos1*cos_cos2 + cos_sin1*cos_sin2);
   END

This gives you the distance.

Don't forget to add an index on lat/lon so the bounding boxing can help the search instead of slowing it down (the index is already added in the CREATE TABLE query above).

INDEX `lat_lon_idx` (`lat`, `lon`)

Given an old table with only lat/lon coordinates, you can set up a script to update it like this: (php using meekrodb)

$users = DB::query('SELECT id,lat,lon FROM Old_Coordinates');

foreach ($users as $user)
{
  $lat_rad = deg2rad($user['lat']);
  $lon_rad = deg2rad($user['lon']);

  DB::replace('Coordinates', array(
    'object_id' => $user['id'],
    'object_type' => 0,
    'sin_lat' => sin($lat_rad),
    'cos_cos' => cos($lat_rad)*cos($lon_rad),
    'cos_sin' => cos($lat_rad)*sin($lon_rad),
    'lat' => $user['lat'],
    'lon' => $user['lon']
  ));
}

Then you optimize the actual query to only do the distance calculation when really needed, for example by bounding the circle (well, oval) from inside and outside. For that, you'll need to precalculate several metrics for the query itself:

// assuming the search center coordinates are $lat and $lon in degrees
// and radius in km is given in $distance
$lat_rad = deg2rad($lat);
$lon_rad = deg2rad($lon);
$R = 6371; // earth's radius, km
$distance_rad = $distance/$R;
$distance_rad_plus = $distance_rad * 1.06; // ovality error for outer bounding box
$dist_deg_lat = rad2deg($distance_rad_plus); //outer bounding box
$dist_deg_lon = rad2deg($distance_rad_plus/cos(deg2rad($lat)));
$dist_deg_lat_small = rad2deg($distance_rad/sqrt(2)); //inner bounding box
$dist_deg_lon_small = rad2deg($distance_rad/cos(deg2rad($lat))/sqrt(2));

Given those preparations, the query goes something like this (php):

$neighbors = DB::query("SELECT id, type, lat, lon,
       geodistance(sin_lat,cos_cos,cos_sin,%d,%d,%d) as distance
       FROM Coordinates WHERE
       lat BETWEEN %d AND %d AND lon BETWEEN %d AND %d
       HAVING (lat BETWEEN %d AND %d AND lon BETWEEN %d AND %d) OR distance <= %d",
  // center radian values: sin_lat, cos_cos, cos_sin
       sin($lat_rad),cos($lat_rad)*cos($lon_rad),cos($lat_rad)*sin($lon_rad),
  // min_lat, max_lat, min_lon, max_lon for the outside box
       $lat-$dist_deg_lat,$lat+$dist_deg_lat,
       $lon-$dist_deg_lon,$lon+$dist_deg_lon,
  // min_lat, max_lat, min_lon, max_lon for the inside box
       $lat-$dist_deg_lat_small,$lat+$dist_deg_lat_small,
       $lon-$dist_deg_lon_small,$lon+$dist_deg_lon_small,
  // distance in radians
       $distance_rad);

EXPLAIN on the above query might say that it's not using index unless there's enough results to trigger such. The index will be used when there's enough data in the coordinates table. You can add FORCE INDEX (lat_lon_idx) to the SELECT to make it use the index with no regards to the table size, so you can verify with EXPLAIN that it is working correctly.

With the above code samples you should have a working and scalable implementation of object search by distance with minimal error.

查看更多
初与友歌
5楼-- · 2018-12-31 01:55
 SELECT *, (  
    6371 * acos(cos(radians(search_lat)) * cos(radians(lat) ) *   
cos(radians(lng) - radians(search_lng)) + sin(radians(search_lat)) *         sin(radians(lat)))  
) AS distance  
FROM table  
WHERE lat != search_lat AND lng != search_lng AND distance < 25  
 ORDER BY distance  
FETCH 10 ONLY 

for distance of 25 km

查看更多
忆尘夕之涩
6楼-- · 2018-12-31 02:10

I can't comment on the above answer, but be careful with @Pavel Chuchuva's answer. That formula will not return a result if both coordinates are the same. In that case, distance is null, and so that row won't be returned with that formula as is.

I'm not a MySQL expert, but this seems to be working for me:

SELECT id, ( 3959 * acos( cos( radians(37) ) * cos( radians( lat ) ) * cos( radians( lng ) - radians(-122) ) + sin( radians(37) ) * sin( radians( lat ) ) ) ) AS distance 
FROM markers HAVING distance < 25 OR distance IS NULL ORDER BY distance LIMIT 0 , 20;
查看更多
后来的你喜欢了谁
7楼-- · 2018-12-31 02:13

I thought my javascript implementation would be a good reference to:

/*
 * Check to see if the second coord is within the precision ( meters )
 * of the first coord and return accordingly
 */
function checkWithinBound(coord_one, coord_two, precision) {
    var distance = 3959000 * Math.acos( 
        Math.cos( degree_to_radian( coord_two.lat ) ) * 
        Math.cos( degree_to_radian( coord_one.lat ) ) * 
        Math.cos( 
            degree_to_radian( coord_one.lng ) - degree_to_radian( coord_two.lng ) 
        ) +
        Math.sin( degree_to_radian( coord_two.lat ) ) * 
        Math.sin( degree_to_radian( coord_one.lat ) ) 
    );
    return distance <= precision;
}

/**
 * Get radian from given degree
 */
function degree_to_radian(degree) {
    return degree * (Math.PI / 180);
}
查看更多
登录 后发表回答