How to graph grid scores from GridSearchCV?

2020-05-13 20:23发布

I am looking for a way to graph grid_scores_ from GridSearchCV in sklearn. In this example I am trying to grid search for best gamma and C parameters for an SVR algorithm. My code looks as follows:

    C_range = 10.0 ** np.arange(-4, 4)
    gamma_range = 10.0 ** np.arange(-4, 4)
    param_grid = dict(gamma=gamma_range.tolist(), C=C_range.tolist())
    grid = GridSearchCV(SVR(kernel='rbf', gamma=0.1),param_grid, cv=5)
    grid.fit(X_train,y_train)
    print(grid.grid_scores_)

After I run the code and print the grid scores I get the following outcome:

[mean: -3.28593, std: 1.69134, params: {'gamma': 0.0001, 'C': 0.0001}, mean: -3.29370, std: 1.69346, params: {'gamma': 0.001, 'C': 0.0001}, mean: -3.28933, std: 1.69104, params: {'gamma': 0.01, 'C': 0.0001}, mean: -3.28925, std: 1.69106, params: {'gamma': 0.1, 'C': 0.0001}, mean: -3.28925, std: 1.69106, params: {'gamma': 1.0, 'C': 0.0001}, mean: -3.28925, std: 1.69106, params: {'gamma': 10.0, 'C': 0.0001},etc] 

I would like to visualize all the scores (mean values) depending on gamma and C parameters. The graph I am trying to obtain should look as follows:

enter image description here

Where x-axis is gamma, y-axis is mean score (root mean square error in this case), and different lines represent different C values.

10条回答
祖国的老花朵
2楼-- · 2020-05-13 20:56

This worked for me when I was trying to plot mean scores vs no. of trees in the Random Forest. The reshape() function helps to find out the averages.

param_n_estimators = cv_results['param_n_estimators']
param_n_estimators = np.array(param_n_estimators)
mean_n_estimators = np.mean(param_n_estimators.reshape(-1,5), axis=0)

mean_test_scores = cv_results['mean_test_score']
mean_test_scores = np.array(mean_test_scores)
mean_test_scores = np.mean(mean_test_scores.reshape(-1,5), axis=0)

mean_train_scores = cv_results['mean_train_score']
mean_train_scores = np.array(mean_train_scores)
mean_train_scores = np.mean(mean_train_scores.reshape(-1,5), axis=0)
查看更多
姐就是有狂的资本
3楼-- · 2020-05-13 20:57

Here's fully working code that will produce plots so you can fully visualize the varying of up to 3 parameters using GridSearchCV. This is what you will see when running the code:

  1. Parameter1 (x-axis)
  2. Cross Validaton Mean Score (y-axis)
  3. Parameter2 (extra line plotted for each different Parameter2 value, with a legend for reference)
  4. Parameter3 (extra charts will pop up for each different Parameter3 value, allowing you to view differences between these different charts)

For each line plotted, also shown is a standard deviation of what you can expect the Cross Validation Mean Score to do based on the multiple CV's you're running. Enjoy!

from sklearn import tree
from sklearn import model_selection
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.datasets import load_digits

digits = load_digits()
X, y = digits.data, digits.target

Algo = [['DecisionTreeClassifier', tree.DecisionTreeClassifier(),  # algorithm
             'max_depth', [1, 2, 4, 6, 8, 10, 12, 14, 18, 20, 22, 24, 26, 28, 30],  # Parameter1
             'max_features', ['sqrt', 'log2', None],  # Parameter2
                 'criterion', ['gini', 'entropy']]]  # Parameter3


def plot_grid_search(cv_results, grid_param_1, grid_param_2, name_param_1, name_param_2, title):
    # Get Test Scores Mean and std for each grid search

    grid_param_1 = list(str(e) for e in grid_param_1)
    grid_param_2 = list(str(e) for e in grid_param_2)
    scores_mean = cv_results['mean_test_score']
    scores_std = cv_results['std_test_score']
    params_set = cv_results['params']

    scores_organized = {}
    std_organized = {}
    std_upper = {}
    std_lower = {}
    for p2 in grid_param_2:
        scores_organized[p2] = []
        std_organized[p2] = []
        std_upper[p2] = []
        std_lower[p2] = []
        for p1 in grid_param_1:
            for i in range(len(params_set)):
                if str(params_set[i][name_param_1]) == str(p1) and str(params_set[i][name_param_2]) == str(p2):
                    mean = scores_mean[i]
                    std = scores_std[i]
                    scores_organized[p2].append(mean)
                    std_organized[p2].append(std)
                    std_upper[p2].append(mean + std)
                    std_lower[p2].append(mean - std)

    _, ax = plt.subplots(1, 1)

    # Param1 is the X-axis, Param 2 is represented as a different curve (color line)
    # plot means
    for key in scores_organized.keys():
        ax.plot(grid_param_1, scores_organized[key], '-o', label= name_param_2 + ': ' + str(key))
        ax.fill_between(grid_param_1, std_lower[key], std_upper[key], alpha=0.1)

    ax.set_title(title)
    ax.set_xlabel(name_param_1)
    ax.set_ylabel('CV Average Score')
    ax.legend(loc="best")
    ax.grid('on')
    plt.show()

dataset = 'Titanic'

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
cv_split = model_selection.KFold(n_splits=10, random_state=2)



for i in range(len(Algo)):

    name = Algo[0][0]
    alg = Algo[0][1]
    param_1_name = Algo[0][2]
    param_1_range = Algo[0][3]
    param_2_name = Algo[0][4]
    param_2_range = Algo[0][5]
    param_3_name = Algo[0][6]
    param_3_range = Algo[0][7]

    for p in param_3_range:
        # grid search
        param = {
            param_1_name: param_1_range,
            param_2_name: param_2_range,
            param_3_name: [p]
        }
        grid_test = GridSearchCV(alg, param_grid=param, scoring='accuracy', cv=cv_split)
        grid_test.fit(X_train, y_train)
        plot_grid_search(grid_test.cv_results_, param[param_1_name], param[param_2_name], param_1_name, param_2_name, dataset + ' GridSearch Scores: ' + name + ', ' + param_3_name + '=' + str(p))

    param = {
        param_1_name: param_1_range,
        param_2_name: param_2_range,
        param_3_name: param_3_range
    }
    grid_final = GridSearchCV(alg, param_grid=param, scoring='accuracy', cv=cv_split)
    grid_final.fit(X_train, y_train)
    best_params = grid_final.best_params_
    alg.set_params(**best_params)
查看更多
Lonely孤独者°
4楼-- · 2020-05-13 21:01

The code shown by @sascha is correct. However, the grid_scores_ attribute will be soon deprecated. It is better to use the cv_results attribute.

It can be implemente in a similar fashion to that of @sascha method:

def plot_grid_search(cv_results, grid_param_1, grid_param_2, name_param_1, name_param_2):
    # Get Test Scores Mean and std for each grid search
    scores_mean = cv_results['mean_test_score']
    scores_mean = np.array(scores_mean).reshape(len(grid_param_2),len(grid_param_1))

    scores_sd = cv_results['std_test_score']
    scores_sd = np.array(scores_sd).reshape(len(grid_param_2),len(grid_param_1))

    # Plot Grid search scores
    _, ax = plt.subplots(1,1)

    # Param1 is the X-axis, Param 2 is represented as a different curve (color line)
    for idx, val in enumerate(grid_param_2):
        ax.plot(grid_param_1, scores_mean[idx,:], '-o', label= name_param_2 + ': ' + str(val))

    ax.set_title("Grid Search Scores", fontsize=20, fontweight='bold')
    ax.set_xlabel(name_param_1, fontsize=16)
    ax.set_ylabel('CV Average Score', fontsize=16)
    ax.legend(loc="best", fontsize=15)
    ax.grid('on')

# Calling Method 
plot_grid_search(pipe_grid.cv_results_, n_estimators, max_features, 'N Estimators', 'Max Features')

The above results in the following plot:

enter image description here

查看更多
Fickle 薄情
5楼-- · 2020-05-13 21:01

I wanted to do something similar (but scalable to a large number of parameters) and here is my solution to generate swarm plots of the output:

score = pd.DataFrame(gs_clf.grid_scores_).sort_values(by='mean_validation_score', ascending = False)
for i in parameters.keys():
    print(i, len(parameters[i]), parameters[i])
score[i] = score.parameters.apply(lambda x: x[i])
l =['mean_validation_score'] + list(parameters.keys())
for i in list(parameters.keys()):
    sns.swarmplot(data = score[l], x = i, y = 'mean_validation_score')
    #plt.savefig('170705_sgd_optimisation//'+i+'.jpg', dpi = 100)
    plt.show()

SGDclassifier Loss Function Example

查看更多
登录 后发表回答