I want to pivot
a df
and display values based off time values, not column values.
df = pd.DataFrame({
'Place' : ['John','Alan','Cory','Jim','John','Alan','Cory','Jim'],
'Number' : ['2','3','5','5','3','4','6','6'],
'Code' : ['1','2','3','4','1','2','3','4'],
'Time' : ['1904-01-01 08:00:00','1904-01-01 09:00:00','1904-01-02 01:00:00','1904-01-02 02:00:00','1904-01-01 08:10:00','1904-01-01 09:10:00','1904-01-02 01:10:00','1904-01-02 02:10:00'],
})
df = df.pivot_table(index = 'Number', columns = 'Place', values = 'Time', aggfunc = 'first').fillna('')
Out:
Place Alan Cory Jim John
Number
2 1904-01-01 08:00:00
3 1904-01-01 09:00:00 1904-01-01 08:10:00
4 1904-01-01 09:10:00
5 1904-01-02 01:00:00 1904-01-02 02:00:00
6 1904-01-02 01:10:00 1904-01-02 02:10:00
Intended Output:
Place John Alan Cory Jim
Number
2 1904-01-01 08:00:00
3 1904-01-01 08:10:00 1904-01-01 09:00:00
4 1904-01-01 09:10:00
5 1904-01-02 01:00:00 1904-01-02 02:00:00
6 1904-01-02 01:10:00 1904-01-02 02:10:00
Note: I've only added a dummy dates to differentiate for times after midnight. I will eventually drop the dates and just leave the times once the df
is appropriately sorted.
Unfortunately
pivot_table
sorting columns names by default and no paramater for avoid it. So possible solution isDataFrame.reindex
by original unique values of columnPlace
: