I am training an LDA model in pyspark (spark 2.1.1) on a customers review dataset. Now based on that model I want to predict the topics in the new unseen text.
I am using the following code to make the model
from pyspark import SparkConf, SparkContext
from pyspark.sql import SparkSession
from pyspark.sql import SQLContext, Row
from pyspark.ml.feature import CountVectorizer
from pyspark.ml.feature import HashingTF, IDF, Tokenizer, CountVectorizer, StopWordsRemover
from pyspark.mllib.clustering import LDA, LDAModel
from pyspark.ml.clustering import DistributedLDAModel, LocalLDAModel
from pyspark.mllib.linalg import Vector, Vectors
from pyspark.sql.functions import *
import pyspark.sql.functions as F
path = "D:/sparkdata/sample_text_LDA.txt"
sc = SparkContext("local[*]", "review")
spark = SparkSession.builder.appName('Basics').getOrCreate()
df = spark.read.csv("D:/sparkdata/customers_data.csv", header=True, inferSchema=True)
data = df.select("Reviews").rdd.map(list).map(lambda x: x[0]).zipWithIndex().map(lambda words: Row(idd= words[1], words = words[0].split(" "))).collect()
docDF = spark.createDataFrame(data)
remover = StopWordsRemover(inputCol="words",
outputCol="stopWordsRemoved")
stopWordsRemoved_df = remover.transform(docDF).cache()
Vector = CountVectorizer(inputCol="stopWordsRemoved", outputCol="vectors")
model = Vector.fit(stopWordsRemoved_df)
result = model.transform(stopWordsRemoved_df)
corpus = result.select("idd", "vectors").rdd.map(lambda x: [x[0],Vectors.fromML(x[1])]).cache()
# Cluster the documents topics using LDA
ldaModel = LDA.train(corpus, k=3,maxIterations=100,optimizer='online')
topics = ldaModel.topicsMatrix()
vocabArray = model.vocabulary
print(ldaModel.describeTopics())
wordNumbers = 10 # number of words per topic
topicIndices = sc.parallelize(ldaModel.describeTopics(maxTermsPerTopic = wordNumbers))
def topic_render(topic): # specify vector id of words to actual words
terms = topic[0]
result = []
for i in range(wordNumbers):
term = vocabArray[terms[i]]
result.append(term)
return result
topics_final = topicIndices.map(lambda topic: topic_render(topic)).collect()
for topic in range(len(topics_final)):
print("Topic" + str(topic) + ":")
for term in topics_final[topic]:
print (term)
print ('\n')
Now I have a dataframe with a column having new customer reviews and I want to predict that to which topic cluster they belong. I have searched for answers, mostly the following way is recommended, as here Spark MLlib LDA, how to infer the topics distribution of a new unseen document?.
newDocuments: RDD[(Long, Vector)] = ...
topicDistributions = distLDA.toLocal.topicDistributions(newDocuments)
However, I get the following error:
'LDAModel' object has no attribute 'toLocal'. Neither do it have topicDistribution attribute.
So are these attributes not supported in spark 2.1.1?
So any other way to infer topics from the unseen data?
You're going to need to pre-process the new data:
Then you can just pass it through the trained LDA as a function. All you need is that bow_corpus:
If you want it out in a csv try this:
I hope this helps :)