I am trying to plot flow map (for singapore) . I have Entry(Lat,Long) and Exit (Lat,long). I am trying to map the flow from entry to exit in singapore map.
structure(list(token_id = c(1.12374e+19, 1.12374e+19, 1.81313e+19,
1.85075e+19, 1.30752e+19, 1.30752e+19, 1.32828e+19, 1.70088e+19,
1.70088e+19, 1.70088e+19, 1.05536e+19, 1.44818e+19, 1.44736e+19,
1.44736e+19, 1.44736e+19, 1.44736e+19, 1.89909e+19, 1.15795e+19,
1.15795e+19, 1.15795e+19, 1.70234e+19, 1.70234e+19, 1.44062e+19,
1.21512e+19, 1.21512e+19, 1.95909e+19, 1.95909e+19, 1.50179e+19,
1.50179e+19, 1.24174e+19, 1.36445e+19, 1.98549e+19, 1.92068e+19,
1.18468e+19, 1.18468e+19, 1.92409e+19, 1.92409e+19, 1.21387e+19,
1.9162e+19, 1.9162e+19, 1.40385e+19, 1.40385e+19, 1.32996e+19,
1.32996e+19, 1.69103e+19, 1.69103e+19, 1.57387e+19, 1.40552e+19,
1.40552e+19, 1.00302e+19), Entry_Station_Lat = c(1.31509, 1.33261,
1.28425, 1.31812, 1.33858, 1.29287, 1.39692, 1.37773, 1.33858,
1.33322, 1.28179, 1.30036, 1.43697, 1.39752, 1.27637, 1.39752,
1.41747, 1.35733, 1.28405, 1.37773, 1.35898, 1.42948, 1.32774,
1.42948, 1.349, 1.36017, 1.34971, 1.38451, 1.31509, 1.31509,
1.37002, 1.34971, 1.31231, 1.39169, 1.31812, 1.44909, 1.29341,
1.41747, 1.33759, 1.44062, 1.31509, 1.38451, 1.29461, 1.32388,
1.41747, 1.27614, 1.39752, 1.39449, 1.33261, 1.31231), Entry_Station_Long = c(103.76525,
103.84718, 103.84329, 103.89308, 103.70611, 103.8526, 103.90902,
103.76339, 103.70611, 103.74217, 103.859, 103.85563, 103.7865,
103.74745, 103.84596, 103.74745, 103.83298, 103.9884, 103.85152,
103.76339, 103.75191, 103.83505, 103.67828, 103.83505, 103.74956,
103.88504, 103.87326, 103.74437, 103.76525, 103.76525, 103.84955,
103.87326, 103.83793, 103.89548, 103.89308, 103.82004, 103.78479,
103.83298, 103.69742, 103.80098, 103.76525, 103.74437, 103.80605,
103.93002, 103.83298, 103.79156, 103.74745, 103.90051, 103.84718,
103.83793), Exit_Station_Lat = structure(c(48L, 34L, 118L, 60L,
14L, 54L, 10L, 49L, 49L, 74L, 71L, 65L, 102L, 5L, 102L, 119L,
116L, 10L, 13L, 88L, 117L, 66L, 40L, 62L, 117L, 37L, 67L, 34L,
85L, 44L, 102L, 44L, 115L, 29L, 92L, 17L, 121L, 70L, 120L, 52L,
85L, 34L, 42L, 11L, 4L, 115L, 62L, 48L, 92L, 14L), .Label = c("1.27082",
"1.27091", "1.27236", "1.27614", "1.27637", "1.27646", "1.27935",
"1.28221", "1.28247", "1.28405", "1.28621", "1.28819", "1.28932",
"1.29287", "1.29309", "1.29338", "1.29341", "1.29461", "1.29694",
"1.29959", "1.29974", "1.30034", "1.30252", "1.30287", "1.30392",
"1.30394", "1.30619", "1.30736", "1.30842", "1.31139", "1.3115",
"1.31167", "1.31188", "1.31509", "1.31654", "1.31756", "1.31913",
"1.31977", "1.32008", "1.3205", "1.32104", "1.32388", "1.32573",
"1.32725", "1.32774", "1.33119", "1.33155", "1.33261", "1.33322",
"1.33474", "1.33554", "1.33759", "1.33764", "1.33858", "1.33921",
"1.34037", "1.34225", "1.34293", "1.3432", "1.34426", "1.34857",
"1.349", "1.34905", "1.35158", "1.35733", "1.35898", "1.36017",
"1.3625", "1.36849", "1.37002", "1.37121", "1.37304", "1.37666",
"1.37775", "1.3786", "1.37862", "1.38001", "1.38029", "1.3803",
"1.38178", "1.38269", "1.38295", "1.38399", "1.38423", "1.38451",
"1.38671", "1.38672", "1.38777", "1.38814", "1.3894", "1.39147",
"1.39169", "1.39189", "1.39208", "1.39389", "1.39449", "1.39452",
"1.39628", "1.39692", "1.39717", "1.39732", "1.39752", "1.39821",
"1.39928", "1.39962", "1.4023", "1.40455", "1.40511", "1.40524",
"1.40843", "1.40961", "1.41184", "1.41588", "1.41685", "1.41747",
"1.42526", "1.42948", "1.43256", "1.43697", "1.44062", "1.44909"
), class = "factor"), Exit_Station_Long = structure(c(59L, 19L,
27L, 4L, 65L, 3L, 63L, 6L, 6L, 21L, 93L, 121L, 9L, 56L, 9L, 32L,
16L, 63L, 44L, 23L, 50L, 12L, 54L, 11L, 50L, 71L, 87L, 19L, 7L,
118L, 9L, 118L, 49L, 90L, 96L, 31L, 45L, 61L, 38L, 2L, 7L, 19L,
117L, 47L, 34L, 49L, 11L, 59L, 96L, 65L), .Label = c("103.67828",
"103.69742", "103.70611", "103.72092", "103.73274", "103.74217",
"103.74437", "103.74529", "103.74745", "103.74905", "103.74956",
"103.75191", "103.7537", "103.75803", "103.76011", "103.76215",
"103.76237", "103.76449", "103.76525", "103.76648", "103.76667",
"103.76893", "103.7696", "103.77082", "103.77145", "103.77266",
"103.774", "103.77866", "103.78185", "103.78425", "103.78479",
"103.7865", "103.78744", "103.79156", "103.79631", "103.79654",
"103.79836", "103.80098", "103.803", "103.80605", "103.80745",
"103.80781", "103.80978", "103.81703", "103.82004", "103.82592",
"103.82695", "103.83216", "103.83298", "103.83505", "103.83918",
"103.83953", "103.83974", "103.84387", "103.84496", "103.84596",
"103.84673", "103.84674", "103.84718", "103.84823", "103.84955",
"103.85092", "103.85152", "103.85226", "103.8526", "103.85267",
"103.85436", "103.85446", "103.85452", "103.86088", "103.86149",
"103.86275", "103.86291", "103.86395", "103.86405", "103.86896",
"103.87087", "103.87135", "103.87534", "103.87563", "103.8763",
"103.87971", "103.88003", "103.88126", "103.88243", "103.88296",
"103.88504", "103.8858", "103.88816", "103.8886", "103.88934",
"103.89054", "103.89237", "103.89313", "103.8938", "103.89548",
"103.89719", "103.89723", "103.89854", "103.9003", "103.90051",
"103.90208", "103.90214", "103.9031", "103.90484", "103.90537",
"103.90597", "103.90599", "103.90663", "103.9086", "103.90902",
"103.9126", "103.9127", "103.91296", "103.91616", "103.9165",
"103.93002", "103.94638", "103.94929", "103.95337", "103.9884"
), class = "factor")), .Names = c("token_id", "Entry_Station_Lat",
"Entry_Station_Long", "Exit_Station_Lat", "Exit_Station_Long"
), row.names = c(10807L, 10808L, 10810L, 10815L, 10817L, 10818L,
10819L, 10820L, 10823L, 10824L, 10826L, 10827L, 10829L, 10831L,
10832L, 10833L, 10834L, 10835L, 10836L, 10838L, 10840L, 10841L,
10843L, 10847L, 10850L, 10852L, 10854L, 10855L, 10859L, 10861L,
10869L, 10872L, 10883L, 10886L, 10891L, 10895L, 10896L, 10897L,
10900L, 10902L, 10903L, 10906L, 10910L, 10911L, 10912L, 10913L,
10915L, 10920L, 10921L, 10924L), class = "data.frame")
I am trying to get something this : Map Flow
I've also written the
mapdeck
library to make visualisations like this more appealing**subjectively speaking
Alternative answer using
leaflet
andgeosphere
Note that as I mentioned before there is no way of geosphering the paths in such a small locality - the great circles are effectively straight lines. If you want the rounded edges for sake of aesthetics you may have to use the geom_curve way described in my other answer.
Just realized that the original solution usin
geom_path
was more complicated than necessary.geom_segment
works without changing the data:This solution leverages Draw curved lines in ggmap, geom_curve not working to implement curved lines on a map.
ggmaps
used for simplicity - for more ambitious projects I would recommendleaflet
.Below the solution using a long data format with some prior data wrangling. It also uses straight lines instead of the curves above.
I would like to leave an alternative approach for you. What you can do is to restructure your data. Right now you have two columns for entry stations and the other two for exit stations. You can create one column for long, and another for lat by combing these columns. The trick is to use
rbind()
andc()
.Let's have a look of this simple example.
Imagine x is long for entry stations and y for exit stations. 1 is longitude for a starting point. 2 is longitude where the first journey ended. As far as I can see from your sample data, it seems that 3 is identical 2. You could remove duplicated data points for each token_id. If you have a large set of data, perhaps this is something you want to consider. Back to the main point, you can create a column with longitude in the sequence you want with the combination of the two functions. Since you said you have date information, make sure you order the data by date. Then, the sequence of each journey appears in the right way in
tmp
. You want to do this with latitude as well.Now we look into your sample data. It seems that
Exit_Station_Lat
andExit_Station_Long
are in factor. The first operation is to convert them to numeric. Then, you apply the method above and create a data frame. I called your datamydf
.Now let's get a map data from GADM. You can download data using the
raster
package.Finally, you draw a map. The key thing is to use
group
inaes
ingeom_path()
. I hope this will let you move forward.If you want to plot it on an actual Google Map, and recreate the style of your linked map, you can use my
googleway
package that uses Google's Maps API. You need an API key to use their mapsNote, to recreate the map using flight data, see the example given in
?add_polylines
You can also show other types of routes, for example, driving between the locations by using Google's Directions API to encode the driving routes.