Following up on this question and for the sake of completeness, I modified the accepted answer and customized the resulting plot, but I am still facing some important problems.
To sum up, I am doing boxplots reflecting significance of Kruskal-Wallis and pairwise Wilcoxon test comparisons.
I want to replace the p-value numbers with asterisks, and show only the significant comparisons, reducing vertical spacing to the max.
Basically I want to do this, but with the added problem of facets, that messes everything up.
So far I have worked on a very decent MWE, but it still shows problems...
library(reshape2)
library(ggplot2)
library(gridExtra)
library(tidyverse)
library(data.table)
library(ggsignif)
library(RColorBrewer)
data(iris)
iris$treatment <- rep(c("A","B"), length(iris$Species)/2)
mydf <- melt(iris, measure.vars=names(iris)[1:4])
mydf$treatment <- as.factor(mydf$treatment)
mydf$variable <- factor(mydf$variable, levels=sort(levels(mydf$variable)))
mydf$both <- factor(paste(mydf$treatment, mydf$variable), levels=(unique(paste(mydf$treatment, mydf$variable))))
# Change data to reduce number of statistically significant differences
set.seed(2)
mydf <- mydf %>% mutate(value=rnorm(nrow(mydf)))
##
##FIRST TEST BOTH
#Kruskal-Wallis
addkw <- as.data.frame(mydf %>% group_by(Species) %>%
summarize(p.value = kruskal.test(value ~ both)$p.value))
#addkw$p.adjust <- p.adjust(addkw$p.value, "BH")
a <- combn(levels(mydf$both), 2, simplify = FALSE)
#new p.values
pv.final <- data.frame()
for (gr in unique(mydf$Species)){
for (i in 1:length(a)){
tis <- a[[i]] #variable pair to test
as <- subset(mydf, Species==gr & both %in% tis)
pv <- wilcox.test(value ~ both, data=as)$p.value
ddd <- data.table(as)
asm <- as.data.frame(ddd[, list(value=mean(value)), by=list(both=both)])
asm2 <- dcast(asm, .~both, value.var="value")[,-1]
pf <- data.frame(group1=paste(tis[1], gr), group2=paste(tis[2], gr), mean.group1=asm2[,1], mean.group2=asm2[,2], FC.1over2=asm2[,1]/asm2[,2], p.value=pv)
pv.final <- rbind(pv.final, pf)
}
}
#pv.final$p.adjust <- p.adjust(pv.final$p.value, method="BH")
pv.final$map.signif <- ifelse(pv.final$p.value > 0.05, "", ifelse(pv.final$p.value > 0.01,"*", "**"))
cols <- colorRampPalette(brewer.pal(length(unique(mydf$Species)), "Set1"))
myPal <- cols(length(unique(mydf$Species)))
#Function to get a list of plots to use as "facets" with grid.arrange
plot.list=function(mydf, pv.final, addkw, a, myPal){
mylist <- list()
i <- 0
for (sp in unique(mydf$Species)){
i <- i+1
mydf0 <- subset(mydf, Species==sp)
addkw0 <- subset(addkw, Species==sp)
pv.final0 <- pv.final[grep(sp, pv.final$group1), ]
num.signif <- sum(pv.final0$p.value <= 0.05)
P <- ggplot(mydf0,aes(x=both, y=value)) +
geom_boxplot(aes(fill=Species)) +
stat_summary(fun.y=mean, geom="point", shape=5, size=4) +
facet_grid(~Species, scales="free", space="free_x") +
scale_fill_manual(values=myPal[i]) + #WHY IS COLOR IGNORED?
geom_text(data=addkw0, hjust=0, size=4.5, aes(x=0, y=round(max(mydf0$value, na.rm=TRUE)+0.5), label=paste0("KW p=",p.value))) +
geom_signif(test="wilcox.test", comparisons = a[which(pv.final0$p.value<=0.05)],#I can use "a"here
map_signif_level = F,
vjust=0,
textsize=4,
size=0.5,
step_increase = 0.05)
if (i==1){
P <- P + theme(legend.position="none",
axis.text.x=element_text(size=20, angle=90, hjust=1),
axis.text.y=element_text(size=20),
axis.title=element_blank(),
strip.text.x=element_text(size=20,face="bold"),
strip.text.y=element_text(size=20,face="bold"))
} else{
P <- P + theme(legend.position="none",
axis.text.x=element_text(size=20, angle=90, hjust=1),
axis.text.y=element_blank(),
axis.ticks.y=element_blank(),
axis.title=element_blank(),
strip.text.x=element_text(size=20,face="bold"),
strip.text.y=element_text(size=20,face="bold"))
}
#WHY USING THE CODE BELOW TO CHANGE NUMBERS TO ASTERISKS I GET ERRORS?
#P2 <- ggplot_build(P)
#P2$data[[3]]$annotation <- rep(subset(pv.final0, p.value<=0.05)$map.signif, each=3)
#P <- plot(ggplot_gtable(P2))
mylist[[sp]] <- list(num.signif, P)
}
return(mylist)
}
p.list <- plot.list(mydf, pv.final, addkw, a, myPal)
y.rng <- range(mydf$value)
# Get the highest number of significant p-values across all three "facets"
height.factor <- 0.3
max.signif <- max(sapply(p.list, function(x) x[[1]]))
# Lay out the three plots as facets (one for each Species), but adjust so that y-range is same for each facet. Top of y-range is adjusted using max_signif.
png(filename="test.png", height=800, width=1200)
grid.arrange(grobs=lapply(p.list, function(x) x[[2]] +
scale_y_continuous(limits=c(y.rng[1], y.rng[2] + height.factor*max.signif))),
ncol=length(unique(mydf$Species)), top="Random title", left="Value") #HOW TO CHANGE THE SIZE OF THE TITLE AND THE Y AXIS TEXT?
#HOW TO ADD A COMMON LEGEND?
dev.off()
It produces the following plot:
As you can see there are some problems, most obviously:
1- Coloring does not work for some reason
2- I do not seem to be able to change the annotation with the asterisks
I want something more like this (mockup):
So we need to:
1- Make coloring work
2- Show asterisks instead of numbers
...and for the win:
3- Make a common legend
4- Place Kruskal-Wallis line on top
5- Change the size (and alignment) of the title and y axis text
IMPORTANT NOTES
I would appreciate my code is left as intact as possible even if it isn't the prettiest, cause I still have to make use of intermediate objects like "CNb" or "pv.final".
The solution should be easily transferable to other cases; please consider testing "variable" alone, instead of "both"... In this case we have 6 "facets" (vertically and horizontally) and everything gets even more screwed up...
I made this other MWE:
##NOW TEST MEASURE, TO GET VERTICAL AND HORIZONTAL FACETS
addkw <- as.data.frame(mydf %>% group_by(treatment, Species) %>%
summarize(p.value = kruskal.test(value ~ variable)$p.value))
#addkw$p.adjust <- p.adjust(addkw$p.value, "BH")
a <- combn(levels(mydf$variable), 2, simplify = FALSE)
#new p.values
pv.final <- data.frame()
for (tr in levels(mydf$treatment)){
for (gr in levels(mydf$Species)){
for (i in 1:length(a)){
tis <- a[[i]] #variable pair to test
as <- subset(mydf, treatment==tr & Species==gr & variable %in% tis)
pv <- wilcox.test(value ~ variable, data=as)$p.value
ddd <- data.table(as)
asm <- as.data.frame(ddd[, list(value=mean(value, na.rm=T)), by=list(variable=variable)])
asm2 <- dcast(asm, .~variable, value.var="value")[,-1]
pf <- data.frame(group1=paste(tis[1], gr, tr), group2=paste(tis[2], gr, tr), mean.group1=asm2[,1], mean.group2=asm2[,2], FC.1over2=asm2[,1]/asm2[,2], p.value=pv)
pv.final <- rbind(pv.final, pf)
}
}
}
#pv.final$p.adjust <- p.adjust(pv.final$p.value, method="BH")
# set signif level
pv.final$map.signif <- ifelse(pv.final$p.value > 0.05, "", ifelse(pv.final$p.value > 0.01,"*", "**"))
plot.list2=function(mydf, pv.final, addkw, a, myPal){
mylist <- list()
i <- 0
for (sp in unique(mydf$Species)){
for (tr in unique(mydf$treatment)){
i <- i+1
mydf0 <- subset(mydf, Species==sp & treatment==tr)
addkw0 <- subset(addkw, Species==sp & treatment==tr)
pv.final0 <- pv.final[grep(paste(sp,tr), pv.final$group1), ]
num.signif <- sum(pv.final0$p.value <= 0.05)
P <- ggplot(mydf0,aes(x=variable, y=value)) +
geom_boxplot(aes(fill=Species)) +
stat_summary(fun.y=mean, geom="point", shape=5, size=4) +
facet_grid(treatment~Species, scales="free", space="free_x") +
scale_fill_manual(values=myPal[i]) + #WHY IS COLOR IGNORED?
geom_text(data=addkw0, hjust=0, size=4.5, aes(x=0, y=round(max(mydf0$value, na.rm=TRUE)+0.5), label=paste0("KW p=",p.value))) +
geom_signif(test="wilcox.test", comparisons = a[which(pv.final0$p.value<=0.05)],#I can use "a"here
map_signif_level = F,
vjust=0,
textsize=4,
size=0.5,
step_increase = 0.05)
if (i==1){
P <- P + theme(legend.position="none",
axis.text.x=element_blank(),
axis.text.y=element_text(size=20),
axis.title=element_blank(),
axis.ticks.x=element_blank(),
strip.text.x=element_text(size=20,face="bold"),
strip.text.y=element_text(size=20,face="bold"))
}
if (i==4){
P <- P + theme(legend.position="none",
axis.text.x=element_text(size=20, angle=90, hjust=1),
axis.text.y=element_text(size=20),
axis.title=element_blank(),
strip.text.x=element_text(size=20,face="bold"),
strip.text.y=element_text(size=20,face="bold"))
}
if ((i==2)|(i==3)){
P <- P + theme(legend.position="none",
axis.text.x=element_blank(),
axis.text.y=element_blank(),
axis.title=element_blank(),
axis.ticks.x=element_blank(),
axis.ticks.y=element_blank(),
strip.text.x=element_text(size=20,face="bold"),
strip.text.y=element_text(size=20,face="bold"))
}
if ((i==5)|(i==6)){
P <- P + theme(legend.position="none",
axis.text.x=element_text(size=20, angle=90, hjust=1),
axis.text.y=element_blank(),
#axis.ticks.y=element_blank(), #WHY SPECIFYING THIS GIVES ERROR?
axis.title=element_blank(),
axis.ticks.y=element_blank(),
strip.text.x=element_text(size=20,face="bold"),
strip.text.y=element_text(size=20,face="bold"))
}
#WHY USING THE CODE BELOW TO CHANGE NUMBERS TO ASTERISKS I GET ERRORS?
#P2 <- ggplot_build(P)
#P2$data[[3]]$annotation <- rep(subset(pv.final0, p.value<=0.05)$map.signif, each=3)
#P <- plot(ggplot_gtable(P2))
sptr <- paste(sp,tr)
mylist[[sptr]] <- list(num.signif, P)
}
}
return(mylist)
}
p.list2 <- plot.list2(mydf, pv.final, addkw, a, myPal)
y.rng <- range(mydf$value)
# Get the highest number of significant p-values across all three "facets"
height.factor <- 0.5
max.signif <- max(sapply(p.list2, function(x) x[[1]]))
# Lay out the three plots as facets (one for each Species), but adjust so that y-range is same for each facet. Top of y-range is adjusted using max_signif.
png(filename="test2.png", height=800, width=1200)
grid.arrange(grobs=lapply(p.list2, function(x) x[[2]] +
scale_y_continuous(limits=c(y.rng[1], y.rng[2] + height.factor*max.signif))),
ncol=length(unique(mydf$Species)), top="Random title", left="Value") #HOW TO CHANGE THE SIZE OF THE TITLE AND THE Y AXIS TEXT?
#HOW TO ADD A COMMON LEGEND?
dev.off()
That produces the following plot:
Now the color problem becomes more striking, the facet heights are uneven, and something should be done with the redundant facet strip texts too.
I am stuck at this point, so would appreciate any help. Sorry for the long question, but I think it is almost there! Thanks!!
You can try following. As your code is really busy and for me too complicated to understand, I suggest a different approach. I tried to avoid loops and to use the
tidyverse
as much as possible. Thus, first I created your data. Then calculated kruskal wallis tests as this was not possible withinggsignif
. Afterwards I will plot all p.values usinggeom_signif
. Finally, insignificant ones will be removed and a step increase is added.1- Make coloring work done
2- Show asterisks instead of numbers done
...and for the win:
3- Make a common legend done
4- Place Kruskal-Wallis line on top done, I placed the values at the bottom
5- Change the size (and alignment) of the title and y axis text done
and similar approach using two facets
Edit.
Regarding to your
p.adjust
needs, you can set up a function on your own and calling it directly withingeom_signif()
.The challenge is to know how many independet tests you will have in the end. Then you can set the
n
by your own. Here I used8
. But this is maybe wrong.Constructing ggplots in a loop has always been known to produce confusing results, and for the explanation of point 1 I'll refer to this question and many others. There's also a hint there about evaluating the ggplot object on the spot, e.g. via
print
. Re point 2, you were close, a bit of debugging with trial and error helped. Here's the complete code forplot.list
:Note that we can no longer modify the plot via ggplot semantics, since we already applied
ggplot_build
/ggplot_gtable
, so scale modification is no longer possible. If you want to preserve it, move it inside theplot.list
function. So, changing toyields
That's not a complete solution, of course, but I hope that helps.