I have a 3d grid with coordinates
x = linspace(0, Lx, Nx)
y = linspace(0, Ly, Ny)
z = linspace(0, Lz, Nz)
and I need to index points (i.e. x[i],y[j],z[k]) within some radius R of a position (x0,y0,z0). N_i can be quite large. I can do a simple loop to find what I need
points=[]
i0,j0,k0 = floor( (x0,y0,z0)/grid_spacing )
Nr = (i0,j0,k0)/grid_spacing + 2
for i in range(i0-Nr, i0+Nr):
for j in range(j0-Nr, j0+Nr):
for k in range(k0-Nr, k0+Nr):
if norm(array([i,j,k])*grid_spacing - (x0,y0,k0)) < cutoff:
points.append((i,j,k))
but this quite slow. Is there a more natural/ faster way to do this type of operation with numpy?
How about this:
Instead of the last two lines you should be able to do:
If you dont want to call spatial: