I wanted to use user-defined kernel function for Ksvm in R. so, I tried to make a vanilladot kernel and compare with "vanilladot" which is built in "kernlab" as practice.
I write my kernel as follow.
#
###vanilla kernel with class "kernel"
#
kfunction.k <- function(){
k <- function (x,y){crossprod(x,y)}
class(k) <- "kernel"
k}
l<-0.1 ; C<-1/(2*l)
###use kfunction.k
tmp<-ksvm(x,factor(y),scaled=FALSE, type = "C-svc", kernel=kfunction.k(), C = C)
alpha(tmp)[[1]]
ind<-alphaindex(tmp)[[1]]
x.s<-x[ind,] ; y.s<-y[ind]
w.class.k<-t(alpha(tmp)[[1]]*y.s)%*%x.s
w.class.k
I thouhgt result of this operation is eqaul to that of following. However It dosn't.
#
###use "vanilladot"
#
l<-0.1 ; C<-1/(2*l)
tmp1<-ksvm(x,factor(y),scaled=FALSE, type = "C-svc", kernel="vanilladot", C = C)
alpha(tmp1)[[1]]
ind1<-alphaindex(tmp1)[[1]]
x.s<-x[ind1,] ; y.s<-y[ind1]
w.tmp1<-t(alpha(tmp1)[[1]]*y.s)%*%x.s
w.tmp1
I think maybe this problem is related to kernel class. When class is set to "kernel", this problem is occured. However When class is set to "vanillakernel", the result of ksvm using user-defined kernel is equal to that of ksvm using "vanilladot" which is built in Kernlab.
#
###vanilla kernel with class "vanillakernel"
#
kfunction.v.k <- function(){
k <- function (x,y){crossprod(x,y)}
class(k) <- "vanillakernel"
k}
# The only difference between kfunction.k and kfunction.v.k is "class(k)".
l<-0.1 ; C<-1/(2*l)
###use kfunction.v.k
tmp<-ksvm(x,factor(y),scaled=FALSE, type = "C-svc", kernel=kfunction.v.k(), C = C)
alpha(tmp)[[1]]
ind<-alphaindex(tmp)[[1]]
x.s<-x[ind,] ; y.s<-y[ind]
w.class.v.k<-t(alpha(tmp)[[1]]*y.s)%*%x.s
w.class.v.k
I don't understand why the result is different from "vanilladot", when setting the class to "kernel".
Is there an error in my operation?
First, it seems like a really good question!
Now to the point. In the sources of
ksvm
we can find when is a line drawn between using user-defined kernel, and the built-ins:The important parts are two things, first, if we provide
ksvm
with our own kernel, thenktype=4
(while forvanillakernel
,ktype=0
) so it makes two changes:tron_optim
routine is ran with the information regarding the kernelNow, in the
svm.cpp
we can find thetron
routines, and in thetron_run
(called fromtron_optim
), thatLINEAR
kernel has a separate optimization routineAs you can see, the linear case is treated in the more complex, more detailed way. There is an inner optimization loop calling the solver many times. It would require really deep analysis of actual optimization being performed here, but at this step one can answer your question in a following way:
ksvm
think it is actually working with vanillakernel, and so performed this separate optimization routine