Related to Spark - Joining 2 PairRDD elements
When doing a regular join in pig, the last table in the join is not brought into memory but streamed through instead, so if A has small cardinality per key and B large cardinality, it is significantly better to do join A, B
than join A by B
, from performance perspective (avoiding spill and OOM)
Is there a similar concept in spark? I didn't see any such recommendation, and wonder how is it possible? The implementation looks to me pretty much the same as in pig: https://github.com/apache/spark/blob/master/core/src/main/scala/org/apache/spark/rdd/CoGroupedRDD.scala
Or am I missing something?
It does not make a difference, in spark the RDD will only be brought into memory if it is cached. So in spark to achieve the same effect you can cache the smaller RDD. Another thing you can do in spark which I'm not sure that pig does, is if all RDD's being joined have the same partitioner no shuffle needs to be done.