I am playing with a toy example to understand PCA vs keras autoencoder
I have the following code for understanding PCA:
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from sklearn import decomposition
from sklearn import datasets
iris = datasets.load_iris()
X = iris.data
pca = decomposition.PCA(n_components=3)
pca.fit(X)
pca.explained_variance_ratio_
array([ 0.92461621, 0.05301557, 0.01718514])
pca.components_
array([[ 0.36158968, -0.08226889, 0.85657211, 0.35884393],
[ 0.65653988, 0.72971237, -0.1757674 , -0.07470647],
[-0.58099728, 0.59641809, 0.07252408, 0.54906091]])
I have done a few readings and play codes with keras including this one.
However, the reference code feels too high a leap for my level of understanding.
Does someone have a short auto-encoder code which can show me
(1) how to pull the first 3 components from auto-encoder
(2) how to understand what amount of variance the auto-encoder captures
(3) how the auto-encoder components compare against PCA components
First of all, the aim of an autoencoder is to learn a representation (encoding) for a set of data, typically for the purpose of dimensionality reduction. So, the target output of the autoencoder is the autoencoder input itself.
It is shown in [1] that If there is one linear hidden layer and the mean squared error criterion is used to train the network, then the
k
hidden units learn to project the input in the span of thefirst k principal components
of the data. And in [2] you can see that If the hidden layer is nonlinear, the autoencoder behaves differently from PCA, with the ability to capture multi-modal aspects of the input distribution.Autoencoders are data-specific, which means that they will only be able to compress data similar to what they have been trained on. So, the usefulness of features that have been learned by hidden layers could be used for evaluating the efficacy of the method.
For this reason, one way to evaluate an autoencoder efficacy in dimensionality reduction is cutting the output of the middle hidden layer and compare the accuracy/performance of your desired algorithm by this reduced data rather than using original data. Generally, PCA is a linear method, while autoencoders are usually non-linear. Mathematically, it is hard to compare them together, but intuitively I provide an example of dimensionality reduction on MNIST dataset using Autoencoder for your better understanding. The code is here:
It produces a $y\in \mathbb{R}^{3}$ ( almost like what you get by
decomposition.PCA(n_components=3)
). For example, here you see the outputs of layery
for a digit5
instance in dataset:As you see in the above code, when we connect layer
y
to asoftmax
dense layer:the new model
mid
give us a good classification accuracy about95%
. So, it would be reasonable to say thaty
, is an efficiently extracted feature vector for the dataset.References:
[1]: Bourlard, Hervé, and Yves Kamp. "Auto-association by multilayer perceptrons and singular value decomposition." Biological cybernetics 59.4 (1988): 291-294.
[2]: Japkowicz, Nathalie, Stephen Jose Hanson, and Mark A. Gluck. "Nonlinear autoassociation is not equivalent to PCA." Neural computation 12.3 (2000): 531-545.
The earlier answer cover the whole thing, however I am doing the analysis on the Iris data - my code comes with a slightly modificiation from this post which dives further into the topic. As it was request, lets load the data
Let's do a regular PCA
A very simple AE model with linear layers, as the earlier answer pointed out with ... the first reference, one linear hidden layer and the mean squared error criterion is used to train the network, then the k hidden units learn to project the input in the span of the first k principal components of the data.
You can look into the loss if you want
The function to plot the data
Regarding explaining the variability, using non-linear hidden function, leads to other approximation similar to ICA / TSNE and others. Where the idea of variance explanation is not there, still one can look into the convergence.