I have dataframe
site1 time1 site2 time2 site3 time3 site4 time4 site5 time5 ... time6 site7 time7 site8 time8 site9 time9 site10 time10 target
session_id
21669 56 2013-01-12 08:05:57 55.0 2013-01-12 08:05:57 NaN NaT NaN NaT NaN NaT ... NaT NaN NaT NaN NaT NaN NaT NaN NaT 0
54843 56 2013-01-12 08:37:23 55.0 2013-01-12 08:37:23 56.0 2013-01-12 09:07:07 55.0 2013-01-12 09:07:09 NaN NaT ... NaT NaN NaT NaN NaT NaN NaT NaN NaT 0
77292 946 2013-01-12 08:50:13 946.0 2013-01-12 08:50:14 951.0 2013-01-12 08:50:15 946.0 2013-01-12 08:50:15 946.0 2013-01-12 08:50:16 ... 2013-01-12 08:50:16 948.0 2013-01-12 08:50:16 784.0 2013-01-12 08:50:16 949.0 2013-01-12 08:50:17 946.0 2013-01-12 08:50:17 0
114021 945 2013-01-12 08:50:17 948.0 2013-01-12 08:50:17 949.0 2013-01-12 08:50:18 948.0 2013-01-12 08:50:18 945.0 2013-01-12 08:50:18 ... 2013-01-12 08:50:18 947.0 2013-01-12 08:50:19 945.0 2013-01-12 08:50:19 946.0 2013-01-12 08:50:19 946.0 2013-01-12 08:50:20 0
I need to count N of columns, where site != NaN. I try to use
df[['site%s' % i for i in range(1, 11)]].count(axis=1)
but it returns me 10 to every id
Also I have tried
train_df[sites].notnull().count(axis=1)
and it also didn't help.
Desire output
21669 2
54843 4
77292 10
114021 10
I'd do this with just
count
:count
specifically counts non-null values. The issue with your current implementation is thatnotnull
yields boolean values, andbool
s are certainly not-null, meaning they are always counted.And...