I'm trying to optimize my C++ code. I've searched the internet on using dynamically allocated C++ arrays vs using std::vector and have generally seen a recommendation in favor of std::vector and that the difference in performance between the two is negligible. For instance here - Using arrays or std::vectors in C++, what's the performance gap?.
However, I wrote some code to test the performance of iterating through an array/vector and assigning values to the elements and I generally found that using dynamically allocated arrays was nearly 3 times faster than using vectors (I did specify a size for the vectors beforehand). I used g++-4.3.2.
However I feel that my test may have ignored issues I don't know about so I would appreciate any advice on this issue.
Thanks
Code used -
#include <time.h>
#include <iostream>
#include <vector>
using namespace std;
int main() {
clock_t start,end;
std::vector<int> vec(9999999);
std::vector<int>::iterator vecIt = vec.begin();
std::vector<int>::iterator vecEnd = vec.end();
start = clock();
for (int i = 0; vecIt != vecEnd; i++) {
*(vecIt++) = i;
}
end = clock();
cout<<"vector: "<<(double)(end-start)/CLOCKS_PER_SEC<<endl;
int* arr = new int[9999999];
start = clock();
for (int i = 0; i < 9999999; i++) {
arr[i] = i;
}
end = clock();
cout<<"array: "<<(double)(end-start)/CLOCKS_PER_SEC<<endl;
}
Just for fun, try iterating over the plain array using a pointer instead of an integer index (the code should look just like the vector iteration, since the point of STL iterators is to appear like pointer arithmetic for most operations). I bet the speed will be exactly equal in that case. Which of course means you should pick the vector, since it will save you a world of headaches from managing arrays by hand.
When benchmarking C++ comtainers, it's important to enable most compiler optimisations. Several of my own answers on SO have fallen foul of this - for example, the function call overhead when something like operator[] is not inlined can be very significant.
The thing about the standard library classes such as
std::vector
is that yes, naively, it is a lot more code than a raw array. But all of it can be trivially inlined by the compiler, which means that if optimizations are enabled, it becomes essentially the same code as if you'd used a raw array. The speed difference then is not negligible but non-existent. All the overhead is removed at compile-time.But that requires compiler optimizations to be enabled.
I imagine the reason why you found iterating and adding to std::vector 3 times slower than a plain array is a combination of the cost of iterating the vector and doing the assigment.
Edit:
That was my initial assumption before the testcase; however running the testcase (compiled with
-O3
) shows the converse - std::vector is actually 3 times faster, which surprised me.I can't see how std::vector could be faster (certainly not 3 times faster) than a vanilla array copy - I think there's some optimisation being applied to the std::vector compiled code which isn't happening for the array version.
Original benchmark results:
std::vector is 3x faster. Same benchmark again, except add an additional outer loop to run the test iterater loop 1000 times:
$ ./array array: 21.7129 vector: 21.6413
std::vector is now ~ the same speed as array.
Edit 2
Found it! So the problem with your test case is that in the vector case the memory holding the data appears to be already in the CPU cache - either by the way it is initialised, or due to the call to
vec.end()
. If I 'warm' up the CPU cache before each timing test, I get the same numbers for array and vector:This gives me the following result: