I'm trying to run Object Detection API locally.
I believe I have everything set up as described in the TensorFlow Object Detection API documents, however, when I'm trying to run model_main.py, this warning shows and model doesn't train. (I can't really tell if model is training or not, because the process isn't terminated, but no further logs appear)
WARNING:tensorflow:Estimator's model_fn (.model_fn at 0x0000024BDBB3D158>) includes params argument, but params are not passed to Estimator.
The code I'm passing in is:
python tensorflow-models/research/object_detection/model_main.py \
--model_dir=training \
--pipeline_config_path=ssd_mobilenet_v1_coco.config \
--checkpoint_dir=ssd_mobilenet_v1_coco_2017_11_17/model.ckpt \
--num_tain_steps=2000 \
--num_eval_steps=200 \
--alsologtostderr
What could be causing this warning?
Why would the code seem stuck?
Please help!
In my case, I had the same error because I had inside of the folder where my .cpkt files were, the checkpoint of the pre-trained models too.
Removing that file came inside of the .tar.gz file, the training worked.
I also encountered this warning message. I checked
nvidia-smi
and it seemed training wasn't started. Also tried re-organizing output directory and it didn't work out. After checking out Configuring the Object Detection Training Pipeline (tensorflow official), I found it was configuration problem. Solved the problem by addingload_all_detection_checkpoint_vars: true
.I met the same problem, and I found that this warning has nothing to do with the problem that the model doesn't work. I can make the model work as this warning showing.
My mistake was that I misunderstood the line in the document of running_locally.md
"${MODEL_DIR} points to the directory in which training checkpoints and events will be written to"
I changed the MODEL_DIR to the
{project directory}/models/model
where the structure of the directory is:And it worked. Hoping this can help you.
Edit: while this may work, in this case
model_dir
does not contain any saved checkpoint files, if you stop the training after some checkpoint files are saved and restart again, the training would still be skipped. The doc specifies the recommended directory structure, but it is not necessary to be the same structure as all paths to tfrecord, pretrained checkpoints can be configured in the config file.The actual reason is when
model_dir
contains checkpoint files which already reached theNUM_TRAIN_STEP
, the script will assume the training is finished and exit. Remove the checkpoint files and restart training will work.I also received this error, and it was because I had previously trained a model on a different dataset/model/config file, and the previous ckpt files still existed in the directory I was working with, moving the old ckpt training data to a different directory fixed the issue
Your script seems good. One thing we should notice is that, the new model_main.py will not print the log of training(like training step, lr, loss and so on.) It only print the evaluation result after one or multi-epoches, which will be a long time.
So "the process isn't terminated, but no further logs appear" is normal. You can confirm its running by using "nvidia-smi" to check the gpu situation, or use tensorboard to check.