when using C++ vector, time spent is 718 milliseconds, while when I use Array, time is almost 0 milliseconds.
Why so much performance difference?
int _tmain(int argc, _TCHAR* argv[])
{
const int size = 10000;
clock_t start, end;
start = clock();
vector<int> v(size*size);
for(int i = 0; i < size; i++)
{
for(int j = 0; j < size; j++)
{
v[i*size+j] = 1;
}
}
end = clock();
cout<< (end - start)
<<" milliseconds."<<endl; // 718 milliseconds
int f = 0;
start = clock();
int arr[size*size];
for(int i = 0; i < size; i++)
{
for(int j = 0; j < size; j++)
{
arr[i*size+j] = 1;
}
}
end = clock();
cout<< ( end - start)
<<" milliseconds."<<endl; // 0 milliseconds
return 0;
}
If you are compiling this with a Microsoft compiler, to make it a fair comparison you need to switch off iterator security checks and iterator debugging, by defining _SECURE_SCL=0 and _HAS_ITERATOR_DEBUGGING=0.
Secondly, the constructor you are using initialises each vector value with zero, and you are not memsetting the array to zero before filling it. So you are traversing the vector twice.
Try:
Your array arr is allocated on the stack, i.e., the compiler has calculated the necessary space at compile time. At the beginning of the method, the compiler will insert an assembler statement like
which means the stack pointer (
esp
) is decreased by10000 * 10000 * sizeof(int)
bytes to make room for an array of 100002 integers. This operation is almost instant.The vector is heap allocated and heap allocation is much more expensive. When the vector allocates the required memory, it has to ask the operating system for a contiguous chunk of memory and the operating system will have to perform significant work to find this chunk of memory.
As Andreas says in the comments, all your time is spent in this line:
Accessing the vector inside the loop is just as fast as for the array.
For an additional overview see e.g.
[What and where are the stack and heap?
[http://computer.howstuffworks.com/c28.htm][2]
[http://www.cprogramming.com/tutorial/virtual_memory_and_heaps.html][3]
Edit:
After all the comments about performance optimizations and compiler settings, I did some measurements this morning. I had to set
size=3000
so I did my measurements with roughly a tenth of the original entries. All measurements performed on a 2.66 GHz Xeon:With debug settings in Visual Studio 2008 (no optimization, runtime checks, and debug runtime) the vector test took 920 ms compared to 0 ms for the array test.
98,48 % of the total time was spent in
vector::operator[]
, i.e., the time was indeed spent on the runtime checks.With full optimization, the vector test needed 56 ms (with a tenth of the original number of entries) compared to 0 ms for the array.
The vector ctor required 61,72 % of the total application running time.
So I guess everybody is right depending on the compiler settings used. The OP's timing suggests an optimized build or an STL without runtime checks.
As always, the morale is: profile first, optimize second.
To get a fair comparison I think something like the following should be suitable:
In both cases, dynamic allocation and deallocation is performed, as well as accesses to elements.
On my Linux box:
Both the
std::vector<>
and array cases have comparable performance. The point is thatstd::vector<>
can be just as fast as a simple array if your code is structured appropriately.On a related note switching off optimization makes a huge difference in this case:
Many of the optimization assertions made by folks like Neil and jalf are entirely correct.
HTH!
EDIT: Corrected code to force vector destruction to be included in time measurement.
You are probably using VC++, in which case by default standard library components perform many checks at run-time (e.g whether index is in range). These checks can be turned off by defining some macros as 0 (I think
_SECURE_SCL
).Another thing is that I can't even run your code as is: the automatic array is way too large for the stack. When I make it global, then with MingW 3.5 the times I get are 627 ms for the vector and 26875 ms (!!) for the array, which indicates there are really big problems with an array of this size.
As to this particular operation (filling with value 1), you could use the vector's constructor:
and the fill algorithm for the array:
When you declare the array, it lives in the stack (or in static memory zone), which it's very fast, but can't increase its size.
When you declare the vector, it assign dynamic memory, which it's not so fast, but is more flexible in the memory allocation, so you can change the size and not dimension it to the maximum size.
When profiling code, make sure you are comparing similar things.
initializes each element in the vector,
doesn't. Try
and measure again...