What is the best way to implement global counters for a highly concurrent application? In my case I may have 10K-20K go routines performing "work", and I want to count the number and types of items that the routines are working on collectively...
The "classic" synchronous coding style would look like:
var work_counter int
func GoWorkerRoutine() {
for {
// do work
atomic.AddInt32(&work_counter,1)
}
}
Now this gets more complicated because I want to track the "type" of work being done, so really I'd need something like this:
var work_counter map[string]int
var work_mux sync.Mutex
func GoWorkerRoutine() {
for {
// do work
work_mux.Lock()
work_counter["type1"]++
work_mux.Unlock()
}
}
It seems like there should be a "go" optimized way using channels or something similar to this:
var work_counter int
var work_chan chan int // make() called somewhere else (buffered)
// started somewher else
func GoCounterRoutine() {
for {
select {
case c := <- work_chan:
work_counter += c
break
}
}
}
func GoWorkerRoutine() {
for {
// do work
work_chan <- 1
}
}
This last example is still missing the map, but that's easy enough to add. Will this style provide better performance than just a simple atomic increment? I can't tell if this is more or less complicated when we're talking about concurrent access to a global value versus something that may block on I/O to complete...
Thoughts are appreciated.
Update 5/28/2013:
I tested a couple implementations, and the results were not what I expected, here's my counter source code:
package helpers
import (
)
type CounterIncrementStruct struct {
bucket string
value int
}
type CounterQueryStruct struct {
bucket string
channel chan int
}
var counter map[string]int
var counterIncrementChan chan CounterIncrementStruct
var counterQueryChan chan CounterQueryStruct
var counterListChan chan chan map[string]int
func CounterInitialize() {
counter = make(map[string]int)
counterIncrementChan = make(chan CounterIncrementStruct,0)
counterQueryChan = make(chan CounterQueryStruct,100)
counterListChan = make(chan chan map[string]int,100)
go goCounterWriter()
}
func goCounterWriter() {
for {
select {
case ci := <- counterIncrementChan:
if len(ci.bucket)==0 { return }
counter[ci.bucket]+=ci.value
break
case cq := <- counterQueryChan:
val,found:=counter[cq.bucket]
if found {
cq.channel <- val
} else {
cq.channel <- -1
}
break
case cl := <- counterListChan:
nm := make(map[string]int)
for k, v := range counter {
nm[k] = v
}
cl <- nm
break
}
}
}
func CounterIncrement(bucket string, counter int) {
if len(bucket)==0 || counter==0 { return }
counterIncrementChan <- CounterIncrementStruct{bucket,counter}
}
func CounterQuery(bucket string) int {
if len(bucket)==0 { return -1 }
reply := make(chan int)
counterQueryChan <- CounterQueryStruct{bucket,reply}
return <- reply
}
func CounterList() map[string]int {
reply := make(chan map[string]int)
counterListChan <- reply
return <- reply
}
It uses channels for both writes and reads which seems logical.
Here are my test cases:
func bcRoutine(b *testing.B,e chan bool) {
for i := 0; i < b.N; i++ {
CounterIncrement("abc123",5)
CounterIncrement("def456",5)
CounterIncrement("ghi789",5)
CounterIncrement("abc123",5)
CounterIncrement("def456",5)
CounterIncrement("ghi789",5)
}
e<-true
}
func BenchmarkChannels(b *testing.B) {
b.StopTimer()
CounterInitialize()
e:=make(chan bool)
b.StartTimer()
go bcRoutine(b,e)
go bcRoutine(b,e)
go bcRoutine(b,e)
go bcRoutine(b,e)
go bcRoutine(b,e)
<-e
<-e
<-e
<-e
<-e
}
var mux sync.Mutex
var m map[string]int
func bmIncrement(bucket string, value int) {
mux.Lock()
m[bucket]+=value
mux.Unlock()
}
func bmRoutine(b *testing.B,e chan bool) {
for i := 0; i < b.N; i++ {
bmIncrement("abc123",5)
bmIncrement("def456",5)
bmIncrement("ghi789",5)
bmIncrement("abc123",5)
bmIncrement("def456",5)
bmIncrement("ghi789",5)
}
e<-true
}
func BenchmarkMutex(b *testing.B) {
b.StopTimer()
m=make(map[string]int)
e:=make(chan bool)
b.StartTimer()
for i := 0; i < b.N; i++ {
bmIncrement("abc123",5)
bmIncrement("def456",5)
bmIncrement("ghi789",5)
bmIncrement("abc123",5)
bmIncrement("def456",5)
bmIncrement("ghi789",5)
}
go bmRoutine(b,e)
go bmRoutine(b,e)
go bmRoutine(b,e)
go bmRoutine(b,e)
go bmRoutine(b,e)
<-e
<-e
<-e
<-e
<-e
}
I implemented a simple benchmark with just a mutex around the map (just testing writes), and benchmarked both with 5 goroutines running in parallel. Here are the results:
$ go test --bench=. helpers
PASS
BenchmarkChannels 100000 15560 ns/op
BenchmarkMutex 1000000 2669 ns/op
ok helpers 4.452s
I would not have expected the mutex to be that much faster...
Further thoughts?
I implemented this with a simple map + mutex which seems to be the best way to handle this since it is the "simplest way" (which is what Go says to use to choose locks vs channels).
You can run the code on https://play.golang.org/p/9bDMDLFBAY. I made a simple packaged version on gist.github.com