I have a computer with 1 MB of RAM and no other local storage. I must use it to accept 1 million 8-digit decimal numbers over a TCP connection, sort them, and then send the sorted list out over another TCP connection.
The list of numbers may contain duplicates, which I must not discard. The code will be placed in ROM, so I need not subtract the size of my code from the 1 MB. I already have code to drive the Ethernet port and handle TCP/IP connections, and it requires 2 KB for its state data, including a 1 KB buffer via which the code will read and write data. Is there a solution to this problem?
Sources Of Question And Answer:
A radix tree representation would come close to handling this problem, since the radix tree takes advantage of "prefix compression". But it's hard to conceive of a radix tree representation that could represent a single node in one byte -- two is probably about the limit.
But, regardless of how the data is represented, once it is sorted it can be stored in prefix-compressed form, where the numbers 10, 11, and 12 would be represented by, say 001b, 001b, 001b, indicating an increment of 1 from the previous number. Perhaps, then, 10101b would represent an increment of 5, 1101001b an increment of 9, etc.
There is one rather sneaky trick not mentioned here so far. We assume that you have no extra way to store data, but that is not strictly true.
One way around your problem is to do the following horrible thing, which should not be attempted by anyone under any circumstances: Use the network traffic to store data. And no, I don't mean NAS.
You can sort the numbers with only a few bytes of RAM in the following way:
COUNTER
andVALUE
.0
;I
, incrementCOUNTER
and setVALUE
tomax(VALUE, I)
;Once
COUNTER
reaches1000000
, you have all of the values stored in the incessant stream of ICMP requests, andVALUE
now contains the maximum integer. Pick somethreshold T >> 1000000
. SetCOUNTER
to zero. Every time you receive an ICMP packet, incrementCOUNTER
and send the contained integer I back out in another echo request, unlessI=VALUE
, in which case transmit it to the destination for the sorted integers. OnceCOUNTER=T
, decrementVALUE
by1
, resetCOUNTER
to zero and repeat. OnceVALUE
reaches zero you should have transmitted all integers in order from largest to smallest to the destination, and have only used about 47 bits of RAM for the two persistent variables (and whatever small amount you need for the temporary values).I know this is horrible, and I know there can be all sorts of practical issues, but I thought it might give some of you a laugh or at least horrify you.
A solution is possible only because of the difference between 1 megabyte and 1 million bytes. There are about 2 to the power 8093729.5 different ways to choose 1 million 8-digit numbers with duplicates allowed and order unimportant, so a machine with only 1 million bytes of RAM doesn't have enough states to represent all the possibilities. But 1M (less 2k for TCP/IP) is 1022*1024*8 = 8372224 bits, so a solution is possible.
Part 1, initial solution
This approach needs a little more than 1M, I'll refine it to fit into 1M later.
I'll store a compact sorted list of numbers in the range 0 to 99999999 as a sequence of sublists of 7-bit numbers. The first sublist holds numbers from 0 to 127, the second sublist holds numbers from 128 to 255, etc. 100000000/128 is exactly 781250, so 781250 such sublists will be needed.
Each sublist consists of a 2-bit sublist header followed by a sublist body. The sublist body takes up 7 bits per sublist entry. The sublists are all concatenated together, and the format makes it possible to tell where one sublist ends and the next begins. The total storage required for a fully populated list is 2*781250 + 7*1000000 = 8562500 bits, which is about 1.021 M-bytes.
The 4 possible sublist header values are:
00 Empty sublist, nothing follows.
01 Singleton, there is only one entry in the sublist and and next 7 bits hold it.
10 The sublist holds at least 2 distinct numbers. The entries are stored in non-decreasing order, except that the last entry is less than or equal to the first. This allows the end of the sublist to be identified. For example, the numbers 2,4,6 would be stored as (4,6,2). The numbers 2,2,3,4,4 would be stored as (2,3,4,4,2).
11 The sublist holds 2 or more repetitions of a single number. The next 7 bits give the number. Then come zero or more 7-bit entries with the value 1, followed by a 7-bit entry with the value 0. The length of the sublist body dictates the number of repetitions. For example, the numbers 12,12 would be stored as (12,0), the numbers 12,12,12 would be stored as (12,1,0), 12,12,12,12 would be (12,1,1,0) and so on.
I start off with an empty list, read a bunch of numbers in and store them as 32 bit integers, sort the new numbers in place (using heapsort, probably) and then merge them into a new compact sorted list. Repeat until there are no more numbers to read, then walk the compact list once more to generate the output.
The line below represents memory just before the start of the list merge operation. The "O"s are the region that hold the sorted 32-bit integers. The "X"s are the region that hold the old compact list. The "=" signs are the expansion room for the compact list, 7 bits for each integer in the "O"s. The "Z"s are other random overhead.
The merge routine starts reading at the leftmost "O" and at the leftmost "X", and starts writing at the leftmost "=". The write pointer doesn't catch the compact list read pointer until all of the new integers are merged, because both pointers advance 2 bits for each sublist and 7 bits for each entry in the old compact list, and there is enough extra room for the 7-bit entries for the new numbers.
Part 2, cramming it into 1M
To Squeeze the solution above into 1M, I need to make the compact list format a bit more compact. I'll get rid of one of the sublist types, so that there will be just 3 different possible sublist header values. Then I can use "00", "01" and "1" as the sublist header values and save a few bits. The sublist types are:
A Empty sublist, nothing follows.
B Singleton, there is only one entry in the sublist and and next 7 bits hold it.
C The sublist holds at least 2 distinct numbers. The entries are stored in non-decreasing order, except that the last entry is less than or equal to the first. This allows the end of the sublist to be identified. For example, the numbers 2,4,6 would be stored as (4,6,2). The numbers 2,2,3,4,4 would be stored as (2,3,4,4,2).
D The sublist consists of 2 or more repetitions of a single number.
My 3 sublist header values will be "A", "B" and "C", so I need a way to represent D-type sublists.
Suppose I have the C-type sublist header followed by 3 entries, such as "C[17][101][58]". This can't be part of a valid C-type sublist as described above, since the third entry is less than the second but more than the first. I can use this type of construct to represent a D-type sublist. In bit terms, anywhere I have "C{00?????}{1??????}{01?????}" is an impossible C-type sublist. I'll use this to represent a sublist consisting of 3 or more repetitions of a single number. The first two 7-bit words encode the number (the "N" bits below) and are followed by zero or more {0100001} words followed by a {0100000} word.
That just leaves lists that hold exactly 2 repetitions of a single number. I'll represent those with another impossible C-type sublist pattern: "C{0??????}{11?????}{10?????}". There's plenty of room for the 7 bits of the number in the first 2 words, but this pattern is longer than the sublist that it represents, which makes things a bit more complex. The five question-marks at the end can be considered not part of the pattern, so I have: "C{0NNNNNN}{11N????}10" as my pattern, with the number to be repeated stored in the "N"s. That's 2 bits too long.
I'll have to borrow 2 bits and pay them back from the 4 unused bits in this pattern. When reading, on encountering "C{0NNNNNN}{11N00AB}10", output 2 instances of the number in the "N"s, overwrite the "10" at the end with bits A and B, and rewind the read pointer by 2 bits. Destructive reads are ok for this algorithm, since each compact list gets walked only once.
When writing a sublist of 2 repetitions of a single number, write "C{0NNNNNN}11N00" and set the borrowed bits counter to 2. At every write where the borrowed bits counter is non-zero, it is decremented for each bit written and "10" is written when the counter hits zero. So the next 2 bits written will go into slots A and B, and then the "10" will get dropped onto the end.
With 3 sublist header values represented by "00", "01" and "1", I can assign "1" to the most popular sublist type. I'll need a small table to map sublist header values to sublist types, and I'll need an occurrence counter for each sublist type so that I know what the best sublist header mapping is.
The worst case minimal representation of a fully populated compact list occurs when all the sublist types are equally popular. In that case I save 1 bit for every 3 sublist headers, so the list size is 2*781250 + 7*1000000 - 781250/3 = 8302083.3 bits. Rounding up to a 32 bit word boundary, thats 8302112 bits, or 1037764 bytes.
1M minus the 2k for TCP/IP state and buffers is 1022*1024 = 1046528 bytes, leaving me 8764 bytes to play with.
But what about the process of changing the sublist header mapping ? In the memory map below, "Z" is random overhead, "=" is free space, "X" is the compact list.
Start reading at the leftmost "X" and start writing at the leftmost "=" and work right. When it's done the compact list will be a little shorter and it will be at the wrong end of memory:
So then I'll need to shunt it to the right:
In the header mapping change process, up to 1/3 of the sublist headers will be changing from 1-bit to 2-bit. In the worst case these will all be at the head of the list, so I'll need at least 781250/3 bits of free storage before I start, which takes me back to the memory requirements of the previous version of the compact list :(
To get around that, I'll split the 781250 sublists into 10 sublist groups of 78125 sublists each. Each group has its own independent sublist header mapping. Using the letters A to J for the groups:
Each sublist group shrinks or stays the same during a sublist header mapping change:
The worst case temporary expansion of a sublist group during a mapping change is 78125/3 = 26042 bits, under 4k. If I allow 4k plus the 1037764 bytes for a fully populated compact list, that leaves me 8764 - 4096 = 4668 bytes for the "Z"s in the memory map.
That should be plenty for the 10 sublist header mapping tables, 30 sublist header occurrence counts and the other few counters, pointers and small buffers I'll need, and space I've used without noticing, like stack space for function call return addresses and local variables.
Part 3, how long would it take to run?
With an empty compact list the 1-bit list header will be used for an empty sublist, and the starting size of the list will be 781250 bits. In the worst case the list grows 8 bits for each number added, so 32 + 8 = 40 bits of free space are needed for each of the 32-bit numbers to be placed at the top of the list buffer and then sorted and merged. In the worst case, changing the sublist header mapping results in a space usage of 2*781250 + 7*entries - 781250/3 bits.
With a policy of changing the sublist header mapping after every fifth merge once there are at least 800000 numbers in the list, a worst case run would involve a total of about 30M of compact list reading and writing activity.
Source:
http://nick.cleaton.net/ramsortsol.html
If the input stream could be received few times this would be much easier (no information about that, idea and time-performance problem).
Then, we could count the decimal values. With counted values it would be easy to make the output stream. Compress by counting the values. It depends what would be in the input stream.
Now aiming to an actual solution, covering all possible cases of input in the 8 digit range with only 1MB of RAM. NOTE: work in progress, tomorrow will continue. Using arithmetic coding of deltas of the sorted ints, worst case for 1M sorted ints would cost about 7bits per entry (since 99999999/1000000 is 99, and log2(99) is almost 7 bits).
But you need the 1m integers sorted to get to 7 or 8 bits! Shorter series would have bigger deltas, therefore more bits per element.
I'm working on taking as many as possible and compressing (almost) in-place. First batch of close to 250K ints would need about 9 bits each at best. So result would take about 275KB. Repeat with remaining free memory a few times. Then decompress-merge-in-place-compress those compressed chunks. This is quite hard, but possible. I think.
The merged lists would get closer and closer to the 7bit per integer target. But I don't know how many iterations it would take of the merge loop. Perhaps 3.
But the imprecision of the arithmetic coding implementation might make it impossible. If this problem is possible at all, it would be extremely tight.
Any volunteers?
Gilmanov's answer is very wrong in its assumptions. It starts speculating based in a pointless measure of a million consecutive integers. That means no gaps. Those random gaps, however small, really makes it a poor idea.
Try it yourself. Get 1 million random 27 bit integers, sort them, compress with 7-Zip, xz, whatever LZMA you want. The result is over 1.5 MB. The premise on top is compression of sequential numbers. Even delta encoding of that is over 1.1 MB. And never mind this is using over 100 MB of RAM for compression. So even the compressed integers don't fit the problem and never mind run time RAM usage.
It's saddens me how people just upvote pretty graphics and rationalization.
Now compress ints.bin with LZMA...