I've been looking around quite a bit to solve my issue. I got many problems solved but this one is still haunting me :S It's been a long time I haven't touch Java programming (programming in general) so be understanding out there! ;)
My goal is to get all the combination possible out of an array of integers. When I use the following code, applied to the test array of integer {1, 2, 3, 4}, I expect to have:
1 2 3 4
1 2 4 3
1 3 2 4
1 3 4 2
2 1 3 4
2 1 4 3
(...)
but here is what I get
1 2 3 4
1 2 3 4 4 3
1 2 3 4 4 3 3 2 4
Does anybody have a clue, a suggestion or even a solution? Thanks in advance!
public class Calculation{
(...)
public void Permute(ArrayList<Integer> soFar,ArrayList<Integer> rest){
if(rest.isEmpty()) this.fillMatrice(convertIntegers(soFar)); // there it goes in a previously created arrow of int
else{
for(int k=0;k<rest.size();k++){
ArrayList<Integer> next=new ArrayList<Integer>();
next=soFar;
next.add(rest.get(k));
ArrayList<Integer> remaining=new ArrayList<Integer>();
List<Integer> sublist = rest.subList(0, k);
for(int a=0;a<sublist.size();a++) remaining.add(sublist.get(a));
sublist = rest.subList(k+1,rest.size());
for(int a=0;a<sublist.size();a++) remaining.add(sublist.get(a));
Permute(next,remaining);
}
}
}
public static ArrayList<Integer> convertArray(int[] integers){
ArrayList<Integer> convArray=new ArrayList<Integer>();
for(int i=0;i<integers.length;i++) convArray.add(integers[i]);
return convArray;
}
public static int[] convertIntegers(List<Integer> integers){
int[] ret = new int[integers.size()];
for(int i=0;i<ret.length;i++) ret[i]=integers.get(i).intValue();
return ret;
}
public Calculation() {
(...)
ArrayList<Integer> soFar=new ArrayList<Integer>();
int[] test={1,2,3,4};
Permute(soFar,convertArray(test));
}
Try this, it seems to work, it uses recursion.
If you don't like the List> you can easily change from arrays to list using the methods from list and static methods from java.util.Collections and java.util.Arrays.
You can try
Recursion
to solve this issue:More info can be had from this link: Combinatorics: generate all “states” - array combinations
You can replicate the same logic here as well.