currently I have successfully defined a custom kernel function(pre-computing the kernel matrix) using def function, and now I am using the GridSearchCV function to get the best parameters.
so, in the custom kernel function, there is a total of 2 parameters which will be tuned (Namely gamm and sea_gamma in the example below), and also, for SVR model, the cost c parameter has to be tuned as well. But until now, I can just tune the cost c parameter using GridSearchCV -> please refer to the Part I: example below.
I have searched for some similar solutions such as:
Is it possible to tune parameters with grid search for custom kernels in scikit-learn?
it says that "One way to do this is using Pipeline, SVC(kernel='precomputed') and wrapping your custom kernel function as a sklearn estimator (a subclass of BaseEstimator and TransformerMixin))."But which is still different from my case and question, however, I tried to solve the problem based on this solution, but it didn't print any outputs so far, even any errors. -> please refer to the Part II: solutions with pipeline.
Part I: Example-> my original custom kernel and scoring method in grid search is:
import numpy as np
import pandas as pd
import sklearn.svm as svm
from sklearn import preprocessing,svm, datasets
from sklearn.preprocessing import StandardScaler, MaxAbsScaler
from sklearn.metrics.pairwise import rbf_kernel
from sklearn.grid_search import GridSearchCV
from sklearn.svm import SVR
from sklearn.pipeline import Pipeline
from sklearn.metrics.scorer import make_scorer
# weighting the vectors
def distance_scale(X,Y):
K = np.zeros((X.shape[0],Y.shape[0]))
gamma_sea =192
for i in range(X.shape[0]):
for j in range(Y.shape[0]):
dis = min(np.abs(X[i]-Y[j]),1-np.abs(X[i]-Y[j]))
K[i,j] = np.exp(-gamma_sea*dis**2)
return K
# custom RBF kernel : kernel matrix calculation
def sea_rbf(X,Y):
gam=1
t1 = X[:, 5:6]
t2 = Y[:, 5:6]
X = X[:, 0:5]
Y = Y[:, 0:5]
d = distance_scale(t1,t2)
return rbf_kernel(X,Y,gamma=gam)*d
def my_custom_loss_func(y_true, y_pred):
error=np.abs((y_true - y_pred)/y_true)
return np.mean(error)*100
my_scorer = make_scorer(my_custom_loss_func,greater_is_better=False)
# Generate sample data
X_train=np.random.random((100,6))
y_train=np.random.random((100,1))
X_test=np.random.random((40,6))
y_test=np.random.random((40,1))
y_train=np.ravel(y_train)
y_test=np.ravel(y_test)
# scale the input and output in training data set, also scale the input
#in testing data set
max_scale = preprocessing.MaxAbsScaler().fit(X_train)
X_train_max = max_scale.transform(X_train)
X_test_max = max_scale.transform(X_test)
max_scale_y = preprocessing.MaxAbsScaler().fit(y_train)
y_train_max = max_scale_y.transform(y_train)
#precompute the kernel matrix
gam=sea_rbf(X_train_max,X_train_max)
#grid search for the model with the custom scoring method, but can only tune the *cost c* parameter in this case.
clf= GridSearchCV(SVR(kernel='precomputed'),
scoring=my_scorer,
cv=5,
param_grid={"C": [0.1,1,2,3,4,5]
})
clf.fit(gam, y_train_max)
print(clf.best_params_)
print(clf.best_score_)
print(clf.grid_scores_)
Part II:Solution with Pipeline
from __future__ import print_function
from __future__ import division
import sys
import sklearn
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.pipeline import Pipeline
# Wrapper class for the custom kernel RBF_kernel
class RBF2Kernel(BaseEstimator,TransformerMixin):
def __init__(self, gamma=1,sea_gamma=20):
super(RBF2Kernel,self).__init__()
self.gamma = gamma
self.sea_gamma = sea_gamma
def fit(self, X, y=None, **fit_params):
return self
#calculate the kernel matrix
def transform(self, X):
self.a_train_ = X[:, 0:5]
self.b_train_ = X[:, 0:5]
self.t1_train_ = X[:, 5:6]
self.t2_train_ = X[:, 5:6]
sea=16
K = np.zeros((t1.shape[0],t2.shape[0]))
for i in range(self.t1_train_.shape[0]):
for j in range(self.t2_train_.shape[0]):
dis = min(np.abs(self.t1_train_[i]*sea- self.t2_train_[j]*sea),sea-np.abs(self.t1_train_[i]*sea-self.t2_train_[j]*sea))
K[i,j] = np.exp(-self.gamma_sea *dis**2)
return K
return rbf_kernel(self.a_train_ , self.b_train_, gamma=self.gamma)*K
def main():
print('python: {}'.format(sys.version))
print('numpy: {}'.format(np.__version__))
print('sklearn: {}'.format(sklearn.__version__))
# Generate sample data
X_train=np.random.random((100,6))
y_train=np.random.random((100,1))
X_test=np.random.random((40,6))
y_test=np.random.random((40,1))
y_train=np.ravel(y_train)
y_test=np.ravel(y_test)
# Create a pipeline where our custom predefined kernel RBF2Kernel
# is run before SVR.
pipe = Pipeline([
('sc', MaxAbsScaler()),
('rbf2', RBF2Kernel()),
('svm', SVR()),
])
# Set the parameter 'gamma' of our custom kernel by
# using the 'estimator__param' syntax.
cv_params = dict([
('rbf2__gamma', 10.0**np.arange(-2,2)),
('rbf2__sea_gamma', 10.0**np.arange(-2,2)),
('svm__kernel', ['precomputed']),
('svm__C', 10.0**np.arange(-2,2)),
])
# Do grid search to get the best parameter value of 'gamma'.
# here i am also trying to tune the parameters of the custom kernel
model = GridSearchCV(pipe, cv_params, verbose=1, n_jobs=-1,scoring=my_scorer)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
acc_test = mean_absolute_error(y_test, y_pred)
mape_100 = my_custom_loss_func (y_test, y_pred)
print("Test accuracy: {}".format(acc_test))
print("mape_100: {}".format(mape_100))
print("Best params:")
print(model.best_params_)
print(model.grid_scores_)
if __name__ == '__main__':
main()
so, in summary:
- the example works well, but it can just tune the default parameter(cost parater in this case)
- I want to tune the extra parameters from the custom kernel which i have defined it as a function in Part I.
- scikit-learn or python is still really new for me, if the explanation is unclear, please let me know if you have any questions for the details.
Thanks a lot for your reading, hope the long description would make you a bit more clear, all suggestions are welcomed :)
Attacking the problem from a slightly different angle - how about using an automated parameter tuning with auto-sklearn? It is a drop-in replacement of sklearn and frequently it does a better job than manually tuned parameters.
Wrap the model using a function:
Then test it with a kernel by Parameter Grid:
Use this approach you can manage the kind of function and its set of hyperparameters over a distinct function, call the function directly in main