I am trying to generate uniform random points on the surface of a unit sphere for a Monte Carlo ray tracing program. When I say uniform I mean the points are uniformly distributed with respect to surface area. My current methodology is to calculate uniform random points on a hemisphere pointing in the positive z axis and base in the x-y plane.
The random point on the hemisphere represents the direction of emission of thermal radiation for a diffuse grey emitter.
I achieve the correct result when I use the following calculation :
Note : dsfmt* is will return a random number between 0 and 1.
azimuthal = 2*PI*dsfmt_genrand_close_open(&dsfmtt);
zenith = asin(sqrt(dsfmt_genrand_close_open(&dsfmtt)));
// Calculate the cartesian point
osRay.c._x = sin(zenith)*cos(azimuthal);
osRay.c._y = sin(zenith)*sin(azimuthal);
osRay.c._z = cos(zenith);
However this is quite slow and profiling suggests that it takes up a large proportion of run time. Therefore I sought out some alternative methods:
The Marsaglia 1972 rejection method
do {
x1 = 2.0*dsfmt_genrand_open_open(&dsfmtt)-1.0;
x2 = 2.0*dsfmt_genrand_open_open(&dsfmtt)-1.0;
S = x1*x1 + x2*x2;
} while(S > 1.0f);
osRay.c._x = 2.0*x1*sqrt(1.0-S);
osRay.c._y = 2.0*x2*sqrt(1.0-S);
osRay.c._z = abs(1.0-2.0*S);
Analytical cartesian coordinate calculation
azimuthal = 2*PI*dsfmt_genrand_close_open(&dsfmtt);
u = 2*dsfmt_genrand_close_open(&dsfmtt) -1;
w = sqrt(1-u*u);
osRay.c._x = w*cos(azimuthal);
osRay.c._y = w*sin(azimuthal);
osRay.c._z = abs(u);
While these last two methods run serval times faster than the first, when I use them I get results which indicate that they are not generating uniform random points on the surface of a sphere but rather are giving a distribution which favours the equator.
Additionally the last two methods give identical final results however I am certain that they are incorrect as I am comparing against an analytical solution.
Every reference I have found indicates that these methods do produce uniform distributions however I do not achieve the correct result.
Is there an error in my implementation or have I missed a fundamental idea in the second and third methods?
I think the problem you are having with non-uniform results is because in polar coordinates, a random point on the circle is not uniformly distributed on the radial axis. If you look at the area on
[theta, theta+dtheta]x[r,r+dr]
, for fixedtheta
anddtheta
, the area will be different of different values ofr
. Intuitivly, there is "more area" further out from the center. Thus, you need to scale your random radius to account for this. I haven't got the proof lying around, but the scaling isr=R*sqrt(rand)
, withR
being the radius of the circle andrand
begin the random number.1st try (wrong)
EDITED:
What about?
Acception is here approx 0.4. Than mean that you will reject 60% of solutions.
If you take a horizontal slice of the unit sphere, of height
h
, its surface area is just2 pi h
. (This is how Archimedes calculated the surface area of a sphere.) So the z-coordinate is uniformly distributed in[0,1]
:Also you might be able to save some time by calculating
cos(azimuthal)
andsin(azimuthal)
together -- see this stackoverflow question for discussion.Edited to add: OK, I see now that this is just a slight tweak of your third method. But it cuts out a step.
This should be quick if you have a fast RNG:
To speed it up, you can move the
sqrt
call inside theif
block.The second and third methods do in fact produce uniformly distributed random points on the surface of a sphere with the second method (Marsaglia 1972) producing the fastest run times at around twice the speed on an Intel Xeon 2.8 GHz Quad-Core.
As noted by Alexandre C there is an additional method using the normal distribution which expands to n-spheres better than the methods I have presented.
This link will give you further information on selecting uniformly distributed random points on the surface of a sphere.
My initial method as pointed out by TonyK does not produce uniformly distributed points and rather bias's the poles when generating the random points. This is required by the problem I am trying to solve however I simply assumed it would generate uniformly random points. As suggested by Pablo this method can be optimised by removing the asin() call to reduce run time by around 20%.
Have you tried getting rid of
asin
?