Are there any packages in Python that allow one to do kdtree-like operations for longitude/latitudes on the surface of a sphere? (this would need to take into account the spherical distances properly, as well as the wraparound in longitude).
相关问题
- how to define constructor for Python's new Nam
- streaming md5sum of contents of a large remote tar
- How to get the background from multiple images by
- Evil ctypes hack in python
- Correctly parse PDF paragraphs with Python
A binary search tree cannot handle the wraparound of the polar representation by design. You might need to transform the coordinates to a 3D cartesian space and then apply your favorite search algorithm, e.g., kD-Tree, Octree etc.
Alternatively, if you could limit the input range of coordinates to a small region on the surface, you could apply an appropriate map projection to this region, i.e., one that does not distort the shape of your area too much, and apply a standard binary search tree on these no-wrap-around cartesian map coordinates.
I believe that the BallTree from scikit-learn with the Haversine metric should do the trick for you.
As an example:
Note this returns distances assuming a sphere of radius 1 - to get the distances on the earth multiply by radius = 6371km
see: