numpy histogram cumulative density does not sum to

2020-02-08 08:24发布

Taking a tip from another thread (@EnricoGiampieri's answer to cumulative distribution plots python), I wrote:

# plot cumulative density function of nearest nbr distances
# evaluate the histogram
values, base = np.histogram(nearest, bins=20, density=1)
#evaluate the cumulative
cumulative = np.cumsum(values)
# plot the cumulative function
plt.plot(base[:-1], cumulative, label='data')

I put in the density=1 from the documentation on np.histogram, which says:

"Note that the sum of the histogram values will not be equal to 1 unless bins of unity width are chosen; it is not a probability mass function. "

Well, indeed, when plotted, they don't sum to 1. But, I do not understand the "bins of unity width." When I set the bins to 1, of course, I get an empty chart; when I set them to the population size, I don't get a sum to 1 (more like 0.2). When I use the 40 bins suggested, they sum to about .006.

Can anybody give me some guidance? Thanks!

标签: python numpy
2条回答
家丑人穷心不美
2楼-- · 2020-02-08 09:23

You can simply normalize your values variable yourself like so:

unity_values = values / values.sum()

A full example would look something like this:

import numpy as np
import matplotlib.pyplot as plt

x = np.random.normal(size=37)
density, bins = np.histogram(x, normed=True, density=True)
unity_density = density / density.sum()

fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2, sharex=True, figsize=(8,4))
widths = bins[:-1] - bins[1:]
ax1.bar(bins[1:], density, width=widths)
ax2.bar(bins[1:], density.cumsum(), width=widths)

ax3.bar(bins[1:], unity_density, width=widths)
ax4.bar(bins[1:], unity_density.cumsum(), width=widths)

ax1.set_ylabel('Not normalized')
ax3.set_ylabel('Normalized')
ax3.set_xlabel('PDFs')
ax4.set_xlabel('CDFs')
fig.tight_layout()

enter image description here

查看更多
叼着烟拽天下
3楼-- · 2020-02-08 09:26

You need to make sure your bins are all width 1. That is:

np.all(np.diff(base)==1)

To achieve this, you have to manually specify your bins:

bins = np.arange(np.floor(nearest.min()),np.ceil(nearest.max()))
values, base = np.histogram(nearest, bins=bins, density=1)

And you get:

In [18]: np.all(np.diff(base)==1)
Out[18]: True

In [19]: np.sum(values)
Out[19]: 0.99999999999999989
查看更多
登录 后发表回答