To take an example, consider a set of discounts available to a supermarket shopper.
We could define these rules as data in some standard fashion (lists of qualifying items, applicable dates, coupon codes) and write generic code to handle these. Or, we could write each as a chunk of code, which checks for the appropriate things given the customer's shopping list and returns any applicable discounts.
You could reasonably store the rules as objects, serialised into Blobs or stored in code files, so that each rule could choose its own division between data and code, to allow for future rules that wouldn't fit the type of generic processor considered above.
It's often easy to criticise code that mixes data in, via if statements that check for 6 different things that should be in a file or a database, but is there a rule that helps in the edge cases?
Or is this the point of Object Oriented design, to stop us worrying about the line between data and code?
To clarify, the underlying question is this: How would you code the above example? Is there a rule of thumb that made you decide what is data and what is code?
(Note: I know, code can be compiled, but in a world of dynamic languages and JIT compilation, even that is a blurry concept.)
The important note is that you want to separate out the part of your code that will execute the same every time, (i.e. applying a discount) from the part of your code which could change (i.e. the products to be discounted, or the % of the discount, etc.)
This is simply for safety. If a discount changes, you won't have to re-write your discount code, you'll only need to go into your discounts repository (DB, or app file, or xml file, or however you choose to implement it) and make a small change to a number.
Also, if the discount code is separated into an XML file, then you can give the entire application to a manager, and with sufficient instructions, they won't need to pester you whenever they want to change the discount rates.
When you mix in data and code, you are exponentially increasing the odds of breaking when anything changes. So, as leppie said, you need to extract the constantly changing parts, and put them in a separate place.
Relationship between code and data is as follows:
code after compiled to a program processes the data while execution
program can extract data, transform data, load data, generate data ...
Also program can extract code, transform code, load code, generate code tooooooo...
Hence code without compiled or interperator is useless, data is always worth..., but code after compiled can do all the above activities....
For eg)
Sourcecontrolsystem process Sourcecodes
here source code itself is a code
Backupscripts process files
here files is a data and so on...
The line between data and code (program) is blurry. It's ultimately just a question of terminology - for example, you could say that data is everything that is not code. But, as you wrote, they can be happily mixed together (although usually it's better to keep them separate).
Fundamentally, there is of course no difference between data and code, but for real software infrastructures, there can be a big difference. Apart from obvious things like, as you mentioned, compilation, the biggest issue is this:
Most sufficiently large projects are designed to produce "releases" that are one big bundle, produced in 3-month (or longer) cycles, tested extensively and cannot be changed afterwards except in tightly controlled ways. "Code" most definitely cannot be changed, so anything that does need to be changed has to be factored out and made "configuration data" so that changing it becomes palatable those whose job it is to ensure that a release works.
Of course, in most cases bad configuration data can break a release just as thoroughly as bad code, so the whole thing is largely an illusion - in reality it doesn't matter whether it's code or "configuration data" that changes, what matters is that the interface between the main system and the parts that change is narrow and well-defined enough to give you a good chance that the person who does the change understands all consequences of what he's doing.
This is already harder than most people think when it's really just a few strings and numbers that are configured (I've personally witnessed a production mainframe system crash because it had one boolean value set differently than another system it was talking to). When your "configuration data" contains complex logic, it's almost impossible to achieve. But the situation isn't going to be any better ust because you use a badly-designed ad hoc "rules configuration" language instead of "real" code.
Data is information. It's not about where you decide to put it, be it a db, config file, config through code or inside the classes.
The same happens for behaviors / code. It's not about where you decide to put it or how you choose to represent it.
Huge difference. Data is a given to system while code is a part of system.
Wrong data is senseless: our code===handler is good and what you put that you take, it is not a trouble of system that you meant something else. But if code is bad - system is bad.
In example, let's consider some JSON, some bad code parser.js by me and let's say good V8. For my system bad parser.js is a code and my system works wrong. But for Google system my bad parser is data that no how says about quality of V8.
The question is very practical, no sophistic. https://en.wikipedia.org/wiki/Systems_engineering tries to make good answer and money.