How to stop INFO messages displaying on spark cons

2019-01-01 06:35发布

I'd like to stop various messages that are coming on spark shell.

I tried to edit the log4j.properties file in order to stop these message.

Here are the contents of log4j.properties

# Define the root logger with appender file
log4j.rootCategory=WARN, console
log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.target=System.err
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c{1}: %m%n

# Settings to quiet third party logs that are too verbose
log4j.logger.org.eclipse.jetty=WARN
log4j.logger.org.eclipse.jetty.util.component.AbstractLifeCycle=ERROR
log4j.logger.org.apache.spark.repl.SparkIMain$exprTyper=INFO
log4j.logger.org.apache.spark.repl.SparkILoop$SparkILoopInterpreter=INFO

But messages are still getting displayed on the console.

Here are some example messages

15/01/05 15:11:45 INFO SparkEnv: Registering BlockManagerMaster
15/01/05 15:11:45 INFO DiskBlockManager: Created local directory at /tmp/spark-local-20150105151145-b1ba
15/01/05 15:11:45 INFO MemoryStore: MemoryStore started with capacity 0.0 B.
15/01/05 15:11:45 INFO ConnectionManager: Bound socket to port 44728 with id = ConnectionManagerId(192.168.100.85,44728)
15/01/05 15:11:45 INFO BlockManagerMaster: Trying to register BlockManager
15/01/05 15:11:45 INFO BlockManagerMasterActor$BlockManagerInfo: Registering block manager 192.168.100.85:44728 with 0.0 B RAM
15/01/05 15:11:45 INFO BlockManagerMaster: Registered BlockManager
15/01/05 15:11:45 INFO HttpServer: Starting HTTP Server
15/01/05 15:11:45 INFO HttpBroadcast: Broadcast server star

How do I stop these?

15条回答
十年一品温如言
2楼-- · 2019-01-01 07:06

Edit your conf/log4j.properties file and change the following line:

log4j.rootCategory=INFO, console

to

log4j.rootCategory=ERROR, console

Another approach would be to :

Start spark-shell and type in the following:

import org.apache.log4j.Logger
import org.apache.log4j.Level

Logger.getLogger("org").setLevel(Level.OFF)
Logger.getLogger("akka").setLevel(Level.OFF)

You won't see any logs after that.

Other options for Level include: all, debug, error, fatal, info, off, trace, trace_int, warn

Details about each can be found in the documentation.

查看更多
不流泪的眼
3楼-- · 2019-01-01 07:07

Simple to do on the command line...

spark2-submit --driver-java-options="-Droot.logger=ERROR,console" ..other options..

查看更多
冷夜・残月
4楼-- · 2019-01-01 07:09

Right after starting spark-shell type ;

sc.setLogLevel("ERROR")

In Spark 2.0:

spark = SparkSession.builder.getOrCreate()
spark.sparkContext.setLogLevel("ERROR")
查看更多
伤终究还是伤i
5楼-- · 2019-01-01 07:10

You set disable the Logs by setting its level to OFF as follows:

Logger.getLogger("org").setLevel(Level.OFF);
Logger.getLogger("akka").setLevel(Level.OFF);

or edit log file and set log level to off by just changing the following property:

log4j.rootCategory=OFF, console
查看更多
冷夜・残月
6楼-- · 2019-01-01 07:10

Answers above are correct but didn't exactly help me as there was additional information I required.

I have just setup Spark so the log4j file still had the '.template' suffix and wasn't being read. I believe that logging then defaults to Spark core logging conf.

So if you are like me and find that the answers above didn't help, then maybe you too have to remove the '.template' suffix from your log4j conf file and then the above works perfectly!

http://apache-spark-user-list.1001560.n3.nabble.com/disable-log4j-for-spark-shell-td11278.html

查看更多
唯独是你
7楼-- · 2019-01-01 07:11

An interesting idea is to use the RollingAppender as suggested here: http://shzhangji.com/blog/2015/05/31/spark-streaming-logging-configuration/ so that you don't "polute" the console space, but still be able to see the results under $YOUR_LOG_PATH_HERE/${dm.logging.name}.log.

    log4j.rootLogger=INFO, rolling

log4j.appender.rolling=org.apache.log4j.RollingFileAppender
log4j.appender.rolling.layout=org.apache.log4j.PatternLayout
log4j.appender.rolling.layout.conversionPattern=[%d] %p %m (%c)%n
log4j.appender.rolling.maxFileSize=50MB
log4j.appender.rolling.maxBackupIndex=5
log4j.appender.rolling.file=$YOUR_LOG_PATH_HERE/${dm.logging.name}.log
log4j.appender.rolling.encoding=UTF-8

Another method that solves the cause is to observe what kind of loggings do you usually have (coming from different modules and dependencies), and set for each the granularity for the logging, while turning "quiet" third party logs that are too verbose:

For instance,

    # Silence akka remoting
log4j.logger.Remoting=ERROR
log4j.logger.akka.event.slf4j=ERROR
log4j.logger.org.spark-project.jetty.server=ERROR
log4j.logger.org.apache.spark=ERROR
log4j.logger.com.anjuke.dm=${dm.logging.level}
log4j.logger.org.eclipse.jetty=WARN
log4j.logger.org.eclipse.jetty.util.component.AbstractLifeCycle=ERROR
log4j.logger.org.apache.spark.repl.SparkIMain$exprTyper=INFO
log4j.logger.org.apache.spark.repl.SparkILoop$SparkILoopInterpreter=INFO
查看更多
登录 后发表回答