My training images are downscaled versions of their associated HR image. Thus, the input and the output images aren't the same dimension. For now, I'm using a hand-crafted sample of 13 images, but eventually I would like to be able to use my 500-ish HR (high-resolution) images dataset. This dataset, however, does not have images of the same dimension, so I'm guessing I'll have to crop them in order to obtain a uniform dimension.
I currently have this code set up: it takes a bunch of 512x512x3
images and applies a few transformations to augment the data (flips). I thus obtain a basic set of 39 images in their HR form, and then I downscale them by a factor of 4, thus obtaining my trainset which consits of 39 images of dimension 128x128x3
.
import numpy as np
from keras.preprocessing.image import ImageDataGenerator
import matplotlib.image as mpimg
import skimage
from skimage import transform
from constants import data_path
from constants import img_width
from constants import img_height
from model import setUpModel
def setUpImages():
train = []
finalTest = []
sample_amnt = 11
max_amnt = 13
# Extracting images (512x512)
for i in range(sample_amnt):
train.append(mpimg.imread(data_path + str(i) + '.jpg'))
for i in range(max_amnt-sample_amnt):
finalTest.append(mpimg.imread(data_path + str(i+sample_amnt) + '.jpg'))
# # TODO: https://keras.io/preprocessing/image/
# ImageDataGenerator(featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False,
# samplewise_std_normalization=False, zca_whitening=False, zca_epsilon=1e-06, rotation_range=0,
# width_shift_range=0.0, height_shift_range=0.0, brightness_range=None, shear_range=0.0,
# zoom_range=0.0, channel_shift_range=0.0, fill_mode='nearest', cval=0.0, horizontal_flip=False,
# vertical_flip=False, rescale=None, preprocessing_function=None, data_format=None,
# validation_split=0.0, dtype=None)
# Augmenting data
trainData = dataAugmentation(train)
testData = dataAugmentation(finalTest)
setUpData(trainData, testData)
def setUpData(trainData, testData):
# print(type(trainData)) # <class 'numpy.ndarray'>
# print(len(trainData)) # 64
# print(type(trainData[0])) # <class 'numpy.ndarray'>
# print(trainData[0].shape) # (1400, 1400, 3)
# print(trainData[len(trainData)//2-1].shape) # (1400, 1400, 3)
# print(trainData[len(trainData)//2].shape) # (350, 350, 3)
# print(trainData[len(trainData)-1].shape) # (350, 350, 3)
# TODO: substract mean of all images to all images
# Separating the training data
Y_train = trainData[:len(trainData)//2] # First half is the unaltered data
X_train = trainData[len(trainData)//2:] # Second half is the deteriorated data
# Separating the testing data
Y_test = testData[:len(testData)//2] # First half is the unaltered data
X_test = testData[len(testData)//2:] # Second half is the deteriorated data
# Adjusting shapes for Keras input # TODO: make into a function ?
X_train = np.array([x for x in X_train])
Y_train = np.array([x for x in Y_train])
Y_test = np.array([x for x in Y_test])
X_test = np.array([x for x in X_test])
# # Sanity check: display four images (2x HR/LR)
# plt.figure(figsize=(10, 10))
# for i in range(2):
# plt.subplot(2, 2, i + 1)
# plt.imshow(Y_train[i], cmap=plt.cm.binary)
# for i in range(2):
# plt.subplot(2, 2, i + 1 + 2)
# plt.imshow(X_train[i], cmap=plt.cm.binary)
# plt.show()
setUpModel(X_train, Y_train, X_test, Y_test)
# TODO: possibly remove once Keras Preprocessing is integrated?
def dataAugmentation(dataToAugment):
print("Starting to augment data")
arrayToFill = []
# faster computation with values between 0 and 1 ?
dataToAugment = np.divide(dataToAugment, 255.)
# TODO: switch from RGB channels to CbCrY
# # TODO: Try GrayScale
# trainingData = np.array(
# [(cv2.cvtColor(np.uint8(x * 255), cv2.COLOR_BGR2GRAY) / 255).reshape(350, 350, 1) for x in trainingData])
# validateData = np.array(
# [(cv2.cvtColor(np.uint8(x * 255), cv2.COLOR_BGR2GRAY) / 255).reshape(1400, 1400, 1) for x in validateData])
# adding the normal images (8)
for i in range(len(dataToAugment)):
arrayToFill.append(dataToAugment[i])
# vertical axis flip (-> 16)
for i in range(len(arrayToFill)):
arrayToFill.append(np.fliplr(arrayToFill[i]))
# horizontal axis flip (-> 32)
for i in range(len(arrayToFill)):
arrayToFill.append(np.flipud(arrayToFill[i]))
# downsizing by scale of 4 (-> 64 images of 128x128x3)
for i in range(len(arrayToFill)):
arrayToFill.append(skimage.transform.resize(
arrayToFill[i],
(img_width/4, img_height/4),
mode='reflect',
anti_aliasing=True))
# # Sanity check: display the images
# plt.figure(figsize=(10, 10))
# for i in range(64):
# plt.subplot(8, 8, i + 1)
# plt.imshow(arrayToFill[i], cmap=plt.cm.binary)
# plt.show()
return np.array(arrayToFill)
My question is: in my case, can I use the Preprocessing tool that Keras offers? I would ideally like to be able to input my varying sized images of high quality, crop them (not downsize them) to 512x512x3
, and data augment them through flips and whatnot. Substracting the mean would also be part of what I'd like to achieve. That set would represent my validation set.
Reusing the validation set, I want to downscale by a factor of 4 all the images, and that would generate my training set.
Those two sets could then be split appropriately to obtain, ultimately, the famous X_train
Y_train
X_test
Y_test
.
I'm just hesitant about throwing out all the work I've done so far to preprocess my mini sample, but I'm thinking if it can all be done with a single built-in function, maybe I should give that a go.
This is my first ML project, hence me not understanding very well Keras, and the documentation isn't always the clearest. I'm thinking that the fact that I'm working with a X and Y that are different in size, maybe this function doesn't apply to my project.
Thank you! :)
Yes you can use keras preprocessing function. Below some snippets to help you...
Christof Henkel's suggestion is very clean and nice. I would just like to offer another way to do it using imgaug, a convenient way to augment images in lots of different ways. It's usefull if you want more implemented augmentations or if you ever need to use some ML library other than Keras.
It unfortunatly doesn't have a way to make crops that way but it allows implementing custom functions. Here is an example function for generating random crops of a set size from an image that's at least as big as the chosen crop size:
You can then combine this function with any other builtin imgaug function, for example the flip functions that you're already using like this:
This function could then generate lots of different crops from each image. An example image with some possible results (note that it would result in actual (128, 128, 3) images, they are just merged into one image here for visualization):
Your image set could then be generated by:
It would also be simple to add new functions to be applied to the images, for example the remove mean functions you mentioned.
Here's another way performing random and center crop before resizing using native
ImageDataGenerator
andflow_from_directory
. You can add it aspreprocess_crop.py
module into your project.It first resizes image preserving aspect ratio and then performs crop. Resized image size is based on
crop_fraction
which is hardcoded but can be changed. Seecrop_fraction = 0.875
line where 0.875 appears to be the most common, e.g. 224px crop from 256px image.Note that the implementation has been done by monkey patching
keras_preprocessing.image.utils.loag_img
function as I couldn't find any other way to perform crop before resizing without rewriting many other classes above.Due to these limitations, the cropping method is enumerated into the
interpolation
field. Methods are delimited by:
where the first part is interpolation and second is crop e.g.lanczos:random
. Supported crop methods arenone
,center
,random
. When no crop method is specified,none
is assumed.How to use it
Just drop the
preprocess_crop.py
into your project to enable cropping. The example below shows how you can use random cropping for the training and center cropping for validation:Here's
preprocess_crop.py
file to include with your project: