This error has been the hardest to trace. I am not sure what is going on. I am running a Spark cluster on my location machine. so the entire spark cluster is under one host which is 127.0.0.1
and I run on a standalone mode
JavaPairRDD<byte[], Iterable<CassandraRow>> cassandraRowsRDD= javaFunctions(sc).cassandraTable("test", "hello" )
.select("rowkey", "col1", "col2", "col3", )
.spanBy(new Function<CassandraRow, byte[]>() {
@Override
public byte[] call(CassandraRow v1) {
return v1.getBytes("rowkey").array();
}
}, byte[].class);
Iterable<Tuple2<byte[], Iterable<CassandraRow>>> listOftuples = cassandraRowsRDD.collect(); //ERROR HAPPENS HERE
Tuple2<byte[], Iterable<CassandraRow>> tuple = listOftuples.iterator().next();
byte[] partitionKey = tuple._1();
for(CassandraRow cassandraRow: tuple._2()) {
System.out.println("************START************");
System.out.println(new String(partitionKey));
System.out.println("************END************");
}
This error has been the hardest to trace. It clearly happens at cassandraRowsRDD.collect()
and I dont know why?
16/10/09 23:36:21 ERROR Executor: Exception in task 2.3 in stage 0.0 (TID 21)
java.lang.ClassCastException: cannot assign instance of scala.collection.immutable.List$SerializationProxy to field org.apache.spark.rdd.RDD.org$apache$spark$rdd$RDD$$dependencies_ of type scala.collection.Seq in instance of org.apache.spark.rdd.MapPartitionsRDD
at java.io.ObjectStreamClass$FieldReflector.setObjFieldValues(ObjectStreamClass.java:2133)
at java.io.ObjectStreamClass.setObjFieldValues(ObjectStreamClass.java:1305)
at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:2006)
at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1924)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1801)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1351)
at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:2000)
at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1924)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1801)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1351)
at java.io.ObjectInputStream.readObject(ObjectInputStream.java:371)
at org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:75)
at org.apache.spark.serializer.JavaSerializerInstance.deserialize(JavaSerializer.scala:114)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
at org.apache.spark.scheduler.Task.run(Task.scala:85)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Here are the versions I use
Scala code runner version 2.11.8 // when I run scala -version or even ./spark-shell
compile group: 'org.apache.spark' name: 'spark-core_2.11' version: '2.0.0'
compile group: 'org.apache.spark' name: 'spark-streaming_2.11' version: '2.0.0'
compile group: 'org.apache.spark' name: 'spark-sql_2.11' version: '2.0.0'
compile group: 'com.datastax.spark' name: 'spark-cassandra-connector_2.11' version: '2.0.0-M3':
my gradle file looks like this after introducing something called "provided" which actually doesn't seem to exist but google said to create one so my build.gradle looks like this
group 'com.company'
version '1.0-SNAPSHOT'
apply plugin: 'java'
apply plugin: 'idea'
repositories {
mavenCentral()
mavenLocal()
}
configurations {
provided
}
sourceSets {
main {
compileClasspath += configurations.provided
test.compileClasspath += configurations.provided
test.runtimeClasspath += configurations.provided
}
}
idea {
module {
scopes.PROVIDED.plus += [ configurations.provided ]
}
}
dependencies {
compile 'org.slf4j:slf4j-log4j12:1.7.12'
provided group: 'org.apache.spark', name: 'spark-core_2.11', version: '2.0.0'
provided group: 'org.apache.spark', name: 'spark-streaming_2.11', version: '2.0.0'
provided group: 'org.apache.spark', name: 'spark-sql_2.11', version: '2.0.0'
provided group: 'com.datastax.spark', name: 'spark-cassandra-connector_2.11', version: '2.0.0-M3'
}
jar {
from { configurations.provided.collect { it.isDirectory() ? it : zipTree(it) } }
// with jar
from sourceSets.test.output
manifest {
attributes 'Main-Class': "com.company.batchprocessing.Hello"
}
exclude 'META-INF/.RSA', 'META-INF/.SF', 'META-INF/*.DSA'
zip64 true
}
You call() method should return byte[] like below.
If you still get the issue then check the versions of your dependencies as mentioned in Jira https://issues.apache.org/jira/browse/SPARK-9219
I had the same issue and could resolve it by adding my application's jar to spark's classpath with
Check you code - In Intellij: Analyze... -> Inspect code. If you have deprecated methods related to serialisation fix it. Or simply try to reduce Spark o Scala version. In my case I reduce Scala version to 2.10 and all worked.
I have hit the same exception and have dig into multiple related Jiras (9219, 12675, 18075).
I believe that the exception name is confusing, and the real problem is the inconsistent environment settings between the spark cluster and the driver application.
For example, I started my Spark cluster with the following line in
conf/spark-defaults.conf
:while I started my driver program (even the program is started with
spark-submit
) with a line:in which the
<master ip>
is the correct IP address of the nodemaster
, but the program would fail due to this simple inconsistency.As a result, I would recommend that all driver applications are started with
spark-submit
and do not duplicate any configuration in the driver code (unless you need to override some config). Namely, just let thespark-submit
set your environment with the same way in the running Spark cluster.try don't use .master("spark://hadoop001:7077") and use .master("local[2]") solved my problem
In my case I had to add
spark-avro
jar (I put it into/lib
folder next to main jar):