I have a long format dataframe dogs that I'm trying to reformat to wide using the reshape() function. It currently looks like so:
dogid month year trainingtype home school timeincomp
12345 1 2014 1 1 1 340
12345 2 2014 1 1 1 360
31323 12 2015 2 7 3 440
31323 1 2014 1 7 3 500
31323 2 2014 1 7 3 520
The dogid column is a bunch of ids, one for each dog. The month column varies for 1 to 12 for the 12 months, and year from 2014 to 2015. Trainingtype varies for 1 to 2. Each dog has a timeincomp value for every month-year-trainingtype combination, so 48 entries per dog. Home and school vary from 1-8 and are constant per dog (every entry for the same dog has the same school and home). Time in comp is my response variable.
I would like my table to look like so:
dogid home school month1year2014trainingtype1 month2year2014trainingtype1
12345 1 1 340 360
31323 7 3 500 520
etc. (with columns for each month-year-trainingtype combination)
What parameters should I use in reshape to achieve this?
You can use the function
dcast
from packagereshape2
. It's easier to understand. The left side of the formula is the one that stays long, while the right side is the one that goes wide.The fun.aggregate is the function to apply in case that there is more than 1 number per case. If you're sure you don't have repeated cases, you can use
mean
orsum
I hope it works:
In this case, using base
reshape
, you essentially want aninteraction()
of the three time variables to define your wide variables, so:You can do the same thing using the new replacement for
reshape2
,tidyr
:First, we unite the year, month and trainingtype columns into a new column called newcol, then we spread the data with timeincomp as our value variable.
The NA is there as we have no value, you can give it one by changing
fill = NA
in the spread function.