I have a matrix M which is of NxN dimensions, where M(i,j) = M(j,i)
I would like to represent this structure as a (N²+N)/2 linear array K, to save space. My problem is coming up with the formula that will map a M(min(i,j),min(i,j)) into a range [0,(N^2)/2)
Below is a mapping of a 3x3 matrix with indexes for K linear array, the X means those cells don't exist and instead their transpose is to be used:
0123
X456
XX78
XXX9
Here is a 7x7 matrix with indexes for the K linear array
0 1 2 3 4 5 6
0 00 01 02 03 04 05 06
1 07 08 09 10 11 12
2 13 14 15 16 17
3 18 19 20 21
4 22 23 24
5 25 26
6 27
at the moment I have the following
int main()
{
const unsigned int N = 10;
int M[N][N];
int* M_ = &(M[0][0]);
assert(M[i][j] = M_[N * min(i,j) + max(i,j)]);
//int* K = .....
//assert(M[i][j] = K[.....]);
return 0;
}
Here's the correct mapping:
where
sum(x) = x * (x + 1) / 2;
Assuming y >= x, you could use a "mapping" like
which would produce
If x>y, just swap x and y. You need (size+1)*size/2 elements space for this.
To go the opposite direction which is what I needed: