There are several similar-yet-different concepts in Spark-land surrounding how work gets farmed out to different nodes and executed concurrently. Specifically, there is:
- The Spark Driver node (
sparkDriverCount
) - The number of worker nodes available to a Spark cluster (
numWorkerNodes
) - The number of Spark executors (
numExecutors
) - The DataFrame being operated on by all workers/executors, concurrently (
dataFrame
) - The number of rows in the
dataFrame
(numDFRows
) - The number of partitions on the
dataFrame
(numPartitions
) - And finally, the number of CPU cores available on each worker nodes (
numCpuCoresPerWorker
)
I believe that all Spark clusters have one-and-only-one Spark Driver, and then 0+ worker nodes. If I'm wrong about that, please begin by correcting me! Assuming I'm more or less correct about that, let's lock in a few variables here. Let's say we have a Spark cluster with 1 Driver and 4 Worker nodes, and each Worker Node has 4 CPU cores on it (so a total of 16 CPU cores). So the "given" here is:
sparkDriverCount = 1
numWorkerNodes = 4
numCpuCores = numWorkerNodes * numCpuCoresPerWorker = 4 * 4 = 16
Given that as the setup, I'm wondering how to determine a few things. Specifically:
- What is the relationship between
numWorkerNodes
andnumExecutors
? Is there some known/generally-accepted ratio of workers to executors? Is there a way to determinenumExecutors
givennumWorkerNodes
(or any other inputs)? - Is there a known/generally-accepted/optimal ratio of
numDFRows
tonumPartitions
? How does one calculate the 'optimal' number of partitions based on the size of thedataFrame
? - I've heard from other engineers that a general 'rule of thumb' is:
numPartitions = numWorkerNodes * numCpuCoresPerWorker
, any truth to that? In other words, it prescribes that one should have 1 partition per CPU core.
Yes, a spark application has one and only Driver.
A worker can host multiple executors, you can think of it like the worker to be the machine/node of your cluster and the executor to be a process (executing in a core) that runs on that worker.
So `numWorkerNodes <= numExecutors'.
Personally, having worked in a fake cluster, where my laptop was the Driver and a virtual machine in the very same laptop was the worker, and in an industrial cluster of >10k nodes, I didn't need to care about that, since it seems that spark takes care of that.
I just use:
when I launch/submit my script and spark knows, I guess, how many workers it needs to summon (of course, by taking into account other parameters as well, and the nature of the machines).
Thus, personally, I don't know any such ratio.
I am not aware of one, but as a rule of thumb you could rely on the product of #executors by #executor.cores, and then multiply that by 3 or 4. Of course this is a heuristic. In pyspark it would look like this:
That's a great question. Of course its hard to answer and it depends on your data, cluster, etc., but as discussed here with myself.
Too few partitions and you will have enormous chunks of data, especially when you are dealing with bigdata, thus putting your application in memory stress.
Too many partitions and you will have your hdfs taking much pressure, since all the metadata that has to be generated from the hdfs increases significantly as the number of partitions increase (since it maintains temp files, etc.). *
So what you want is too find a sweet spot for the number of partitions, which is one of the parts of fine tuning your application. :)
Ah, I was writing the heuristic above before seeing this. So this is already answered, but take into account the difference of a worker and an executor.
* I just failed for this today: Prepare my bigdata with Spark via Python, when using too many partitions caused Active tasks is a negative number in Spark UI.