I use KerasClassifier to train the classifier.
The code is below:
import numpy
from pandas import read_csv
from keras.models import Sequential
from keras.layers import Dense
from keras.wrappers.scikit_learn import KerasClassifier
from keras.utils import np_utils
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
from sklearn.preprocessing import LabelEncoder
from sklearn.pipeline import Pipeline
# fix random seed for reproducibility
seed = 7
numpy.random.seed(seed)
# load dataset
dataframe = read_csv("iris.csv", header=None)
dataset = dataframe.values
X = dataset[:,0:4].astype(float)
Y = dataset[:,4]
# encode class values as integers
encoder = LabelEncoder()
encoder.fit(Y)
encoded_Y = encoder.transform(Y)
#print("encoded_Y")
#print(encoded_Y)
# convert integers to dummy variables (i.e. one hot encoded)
dummy_y = np_utils.to_categorical(encoded_Y)
#print("dummy_y")
#print(dummy_y)
# define baseline model
def baseline_model():
# create model
model = Sequential()
model.add(Dense(4, input_dim=4, init='normal', activation='relu'))
#model.add(Dense(4, init='normal', activation='relu'))
model.add(Dense(3, init='normal', activation='softmax'))
# Compile model
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
estimator = KerasClassifier(build_fn=baseline_model, nb_epoch=200, batch_size=5, verbose=0)
#global_model = baseline_model()
kfold = KFold(n_splits=10, shuffle=True, random_state=seed)
results = cross_val_score(estimator, X, dummy_y, cv=kfold)
print("Accuracy: %.2f%% (%.2f%%)" % (results.mean()*100, results.std()*100))
But How to save the final model for future prediction?
I usually use below code to save model:
# serialize model to JSON
model_json = model.to_json()
with open("model.json", "w") as json_file:
json_file.write(model_json)
# serialize weights to HDF5
model.save_weights("model.h5")
print("Saved model to disk")
But I don't know how to insert the saving model's code into KerasClassifier's code.
Thank you.
you can save the model and load in this way.
You can use
model.save(filepath)
to save a Keras model into a single HDF5 file which will contain:In your Python code probable the last line should be:
This allows you to save the entirety of the state of a model in a single file. Saved models can be reinstantiated via
keras.models.load_model()
.The model returned by
load_model()
is a compiled model ready to be used (unless the saved model was never compiled in the first place).model.save()
arguments:The model has a
save
method, which saves all the details necessary to reconstitute the model. An example from the keras documentation:you can save the model in json and weights in a hdf5 file format.
files "model_num.h5" and "model_num.json" are created which contain our model and weights
To use the same trained model for further testing you can simply load the hdf5 file and use it for the prediction of different data. here's how to load the model from saved files.
To predict for different data you can use this