Elegant ways to support equivalence (“equality”) i

2019-01-01 06:25发布

When writing custom classes it is often important to allow equivalence by means of the == and != operators. In Python, this is made possible by implementing the __eq__ and __ne__ special methods, respectively. The easiest way I've found to do this is the following method:

class Foo:
    def __init__(self, item):
        self.item = item

    def __eq__(self, other):
        if isinstance(other, self.__class__):
            return self.__dict__ == other.__dict__
        else:
            return False

    def __ne__(self, other):
        return not self.__eq__(other)

Do you know of more elegant means of doing this? Do you know of any particular disadvantages to using the above method of comparing __dict__s?

Note: A bit of clarification--when __eq__ and __ne__ are undefined, you'll find this behavior:

>>> a = Foo(1)
>>> b = Foo(1)
>>> a is b
False
>>> a == b
False

That is, a == b evaluates to False because it really runs a is b, a test of identity (i.e., "Is a the same object as b?").

When __eq__ and __ne__ are defined, you'll find this behavior (which is the one we're after):

>>> a = Foo(1)
>>> b = Foo(1)
>>> a is b
False
>>> a == b
True

8条回答
千与千寻千般痛.
2楼-- · 2019-01-01 06:36

The 'is' test will test for identity using the builtin 'id()' function which essentially returns the memory address of the object and therefore isn't overloadable.

However in the case of testing the equality of a class you probably want to be a little bit more strict about your tests and only compare the data attributes in your class:

import types

class ComparesNicely(object):

    def __eq__(self, other):
        for key, value in self.__dict__.iteritems():
            if (isinstance(value, types.FunctionType) or 
                    key.startswith("__")):
                continue

            if key not in other.__dict__:
                return False

            if other.__dict__[key] != value:
                return False

         return True

This code will only compare non function data members of your class as well as skipping anything private which is generally what you want. In the case of Plain Old Python Objects I have a base class which implements __init__, __str__, __repr__ and __eq__ so my POPO objects don't carry the burden of all that extra (and in most cases identical) logic.

查看更多
刘海飞了
3楼-- · 2019-01-01 06:37

The way you describe is the way I've always done it. Since it's totally generic, you can always break that functionality out into a mixin class and inherit it in classes where you want that functionality.

class CommonEqualityMixin(object):

    def __eq__(self, other):
        return (isinstance(other, self.__class__)
            and self.__dict__ == other.__dict__)

    def __ne__(self, other):
        return not self.__eq__(other)

class Foo(CommonEqualityMixin):

    def __init__(self, item):
        self.item = item
查看更多
姐姐魅力值爆表
4楼-- · 2019-01-01 06:37

You don't have to override both __eq__ and __ne__ you can override only __cmp__ but this will make an implication on the result of ==, !==, < , > and so on.

is tests for object identity. This means a is b will be True in the case when a and b both hold the reference to the same object. In python you always hold a reference to an object in a variable not the actual object, so essentially for a is b to be true the objects in them should be located in the same memory location. How and most importantly why would you go about overriding this behaviour?

Edit: I didn't know __cmp__ was removed from python 3 so avoid it.

查看更多
千与千寻千般痛.
5楼-- · 2019-01-01 06:38

You need to be careful with inheritance:

>>> class Foo:
    def __eq__(self, other):
        if isinstance(other, self.__class__):
            return self.__dict__ == other.__dict__
        else:
            return False

>>> class Bar(Foo):pass

>>> b = Bar()
>>> f = Foo()
>>> f == b
True
>>> b == f
False

Check types more strictly, like this:

def __eq__(self, other):
    if type(other) is type(self):
        return self.__dict__ == other.__dict__
    return False

Besides that, your approach will work fine, that's what special methods are there for.

查看更多
姐姐魅力值爆表
6楼-- · 2019-01-01 06:43

From this answer: https://stackoverflow.com/a/30676267/541136 I have demonstrated that, while it's correct to define __ne__ in terms __eq__ - instead of

def __ne__(self, other):
    return not self.__eq__(other)

you should use:

def __ne__(self, other):
    return not self == other
查看更多
刘海飞了
7楼-- · 2019-01-01 06:46

I think that the two terms you're looking for are equality (==) and identity (is). For example:

>>> a = [1,2,3]
>>> b = [1,2,3]
>>> a == b
True       <-- a and b have values which are equal
>>> a is b
False      <-- a and b are not the same list object
查看更多
登录 后发表回答