How to deal with name/value pairs of function argu

2020-01-25 12:43发布

I have a function that takes optional arguments as name/value pairs.

function example(varargin)
% Lots of set up stuff
vargs = varargin;
nargs = length(vargs);
names = vargs(1:2:nargs);
values = vargs(2:2:nargs);

validnames = {'foo', 'bar', 'baz'};    
for name = names
   validatestring(name{:}, validnames);
end

% Do something ...
foo = strmatch('foo', names);
disp(values(foo))
end

example('foo', 1:10, 'bar', 'qwerty')

It seems that there is a lot of effort involved in extracting the appropriate values (and it still isn't particularly robust again badly specified inputs). Is there a better way of handling these name/value pairs? Are there any helper functions that come with MATLAB to assist?

13条回答
别忘想泡老子
2楼-- · 2020-01-25 13:28

I could yack for hours about this, but still don't have a good gestalt view of general Matlab signature handling. But here's a couple pieces of advice.

First, take a laissez faire approach to validating input types. Trust the caller. If you really want strong type testing, you want a static language like Java. Try to enforce type safety every where in Matlab, and you'll end up with a good part of your LOC and execution time devoted to run time type tests and coercion in userland, which trades in a lot of the power and development speed of Matlab. I learned this the hard way.

For API signatures (functions intended to be called from other functions, instead of from the command lines), consider using a single Args argument instead of varargin. Then it can be passed around between multiple arguments without having to convert it to and from a comma-separated list for varargin signatures. Structs, like Jonas says, are very convenient. There's also a nice isomorphism between structs and n-by-2 {name,value;...} cells, and you could set up a couple functions to convert between them inside your functions to whichever it wants to use internally.

function example(args)
%EXAMPLE
%
% Where args is a struct or {name,val;...} cell array

Whether you use inputParser or roll your own name/val parser like these other fine examples, package it up in a separate standard function that you'll call from the top of your functions that have name/val signatures. Have it accept the default value list in a data structure that's convenient to write out, and your arg-parsing calls will look sort of like function signature declarations, which helps readability, and avoid copy-and-paste boilerplate code.

Here's what the parsing calls could look like.

function out = my_example_function(varargin)
%MY_EXAMPLE_FUNCTION Example function 

% No type handling
args = parsemyargs(varargin, {
    'Stations'  {'ORD','SFO','LGA'}
    'Reading'   'Min Temp'
    'FromDate'  '1/1/2000'
    'ToDate'    today
    'Units'     'deg. C'
    });
fprintf('\nArgs:\n');
disp(args);

% With type handling
typed_args = parsemyargs(varargin, {
    'Stations'  {'ORD','SFO','LGA'}     'cellstr'
    'Reading'   'Min Temp'              []
    'FromDate'  '1/1/2000'              'datenum'
    'ToDate'    today                   'datenum'
    'Units'     'deg. C'                []
    });
fprintf('\nWith type handling:\n');
disp(typed_args);

% And now in your function body, you just reference stuff like
% args.Stations
% args.FromDate

And here's a function to implement the name/val parsing that way. You could hollow it out and replace it with inputParser, your own type conventions, etc. I think the n-by-2 cell convention makes for nicely readable source code; consider keeping that. Structs are typically more convenient to deal with in the receiving code, but the n-by-2 cells are more convenient to construct using expressions and literals. (Structs require the ",..." continuation at each line, and guarding cell values from expanding to nonscalar structs.)

function out = parsemyargs(args, defaults)
%PARSEMYARGS Arg parser helper
%
% out = parsemyargs(Args, Defaults)
%
% Parses name/value argument pairs.
%
% Args is what you pass your varargin in to. It may be
%
% ArgTypes is a list of argument names, default values, and optionally
% argument types for the inputs. It is an n-by-1, n-by-2 or n-by-3 cell in one
% of these forms forms:
%   { Name; ... }
%   { Name, DefaultValue; ... }
%   { Name, DefaultValue, Type; ... }
% You may also pass a struct, which is converted to the first form, or a
% cell row vector containing name/value pairs as 
%   { Name,DefaultValue, Name,DefaultValue,... }
% Row vectors are only supported because it's unambiguous when the 2-d form
% has at most 3 columns. If there were more columns possible, I think you'd
% have to require the 2-d form because 4-element long vectors would be
% ambiguous as to whether they were on record, or two records with two
% columns omitted.
%
% Returns struct.
%
% This is slow - don't use name/value signatures functions that will called
% in tight loops.

args = structify(args);
defaults = parse_defaults(defaults);

% You could normalize case if you want to. I recommend you don't; it's a runtime cost
% and just one more potential source of inconsistency.
%[args,defaults] = normalize_case_somehow(args, defaults);

out = merge_args(args, defaults);

%%
function out = parse_defaults(x)
%PARSE_DEFAULTS Parse the default arg spec structure
%
% Returns n-by-3 cellrec in form {Name,DefaultValue,Type;...}.

if isstruct(x)
    if ~isscalar(x)
        error('struct defaults must be scalar');
    end
    x = [fieldnames(s) struct2cell(s)];
end
if ~iscell(x)
    error('invalid defaults');
end

% Allow {name,val, name,val,...} row vectors
% Does not work for the general case of >3 columns in the 2-d form!
if size(x,1) == 1 && size(x,2) > 3
    x = reshape(x, [numel(x)/2 2]);
end

% Fill in omitted columns
if size(x,2) < 2
    x(:,2) = {[]}; % Make everything default to value []
end
if size(x,2) < 3
    x(:,3) = {[]}; % No default type conversion
end

out = x;

%%
function out = structify(x)
%STRUCTIFY Convert a struct or name/value list or record list to struct

if isempty(x)
    out = struct;
elseif iscell(x)
    % Cells can be {name,val;...} or {name,val,...}
    if (size(x,1) == 1) && size(x,2) > 2
        % Reshape {name,val, name,val, ... } list to {name,val; ... }
        x = reshape(x, [2 numel(x)/2]);
    end
    if size(x,2) ~= 2
        error('Invalid args: cells must be n-by-2 {name,val;...} or vector {name,val,...} list');
    end

    % Convert {name,val, name,val, ...} list to struct
    if ~iscellstr(x(:,1))
        error('Invalid names in name/val argument list');
    end
    % Little trick for building structs from name/vals
    % This protects cellstr arguments from expanding into nonscalar structs
    x(:,2) = num2cell(x(:,2)); 
    x = x';
    x = x(:);
    out = struct(x{:});
elseif isstruct(x)
    if ~isscalar(x)
        error('struct args must be scalar');
    end
    out = x;
end

%%
function out = merge_args(args, defaults)

out = structify(defaults(:,[1 2]));
% Apply user arguments
% You could normalize case if you wanted, but I avoid it because it's a
% runtime cost and one more chance for inconsistency.
names = fieldnames(args);
for i = 1:numel(names)
    out.(names{i}) = args.(names{i});
end
% Check and convert types
for i = 1:size(defaults,1)
    [name,defaultVal,type] = defaults{i,:};
    if ~isempty(type)
        out.(name) = needa(type, out.(name), type);
    end
end

%%
function out = needa(type, value, name)
%NEEDA Check that a value is of a given type, and convert if needed
%
% out = needa(type, value)

% HACK to support common 'pseudotypes' that aren't real Matlab types
switch type
    case 'cellstr'
        isThatType = iscellstr(value);
    case 'datenum'
        isThatType = isnumeric(value);
    otherwise
        isThatType = isa(value, type);
end

if isThatType
    out = value;
else
    % Here you can auto-convert if you're feeling brave. Assumes that the
    % conversion constructor form of all type names works.
    % Unfortunately this ends up with bad results if you try converting
    % between string and number (you get Unicode encoding/decoding). Use
    % at your discretion.
    % If you don't want to try autoconverting, just throw an error instead,
    % with:
    % error('Argument %s must be a %s; got a %s', name, type, class(value));
    try
        out = feval(type, value);
    catch err
        error('Failed converting argument %s from %s to %s: %s',...
            name, class(value), type, err.message);
    end
end

It is so unfortunate that strings and datenums are not first-class types in Matlab.

查看更多
登录 后发表回答