Is there any numpy group by function?

2020-01-24 13:11发布

Is there any function in numpy to group this array down below by the first column?

I couldn't find any good answer over the internet..

>>> a
array([[  1, 275],
       [  1, 441],
       [  1, 494],
       [  1, 593],
       [  2, 679],
       [  2, 533],
       [  2, 686],
       [  3, 559],
       [  3, 219],
       [  3, 455],
       [  4, 605],
       [  4, 468],
       [  4, 692],
       [  4, 613]])

Wanted output:

array([[[275, 441, 494, 593]],
       [[679, 533, 686]],
       [[559, 219, 455]],
       [[605, 468, 692, 613]]], dtype=object)

7条回答
霸刀☆藐视天下
2楼-- · 2020-01-24 13:33

given X as array of items you want to be grouped and y (1D array) as corresponding groups, following function does the grouping with numpy:

def groupby(X, y):
    y = np.asarray(y)
    X = np.asarray(X)
    y_uniques = np.unique(y)
    return [X[y==yi] for yi in y_uniques]

So, groupby(a[:,1], a[:,0]) returns [array([275, 441, 494, 593]), array([679, 533, 686]), array([559, 219, 455]), array([605, 468, 692, 613])]

查看更多
甜甜的少女心
3楼-- · 2020-01-24 13:37

The numpy_indexed package (disclaimer: I am its author) aims to fill this gap in numpy. All operations in numpy-indexed are fully vectorized, and no O(n^2) algorithms were harmed during the making of this library.

import numpy_indexed as npi
npi.group_by(a[:, 0]).split(a[:, 1])

Note that it is usually more efficient to directly compute relevant properties over such groups (ie, group_by(keys).mean(values)), rather than first splitting into a list / jagged array.

查看更多
走好不送
4楼-- · 2020-01-24 13:37
n = np.unique(a[:,0])
np.array( [ list(a[a[:,0]==i,1]) for i in n] )

outputs:

array([[275, 441, 494, 593], [679, 533, 686], [559, 219, 455],
       [605, 468, 692, 613]], dtype=object)
查看更多
Viruses.
5楼-- · 2020-01-24 13:44

Simplifying the answer of Vincent J one can use return_index = True instead of return_counts = True and get rid of the cumsum:

np.split(a[:,1], np.unique(idx,return_index = True)[1][1:])

Output

[array([275, 441, 494, 593]),
 array([679, 533, 686]),
 array([559, 219, 455]),
 array([605, 468, 692, 613])]
查看更多
太酷不给撩
6楼-- · 2020-01-24 13:47

I used np.unique() followed by np.extract()

unique = np.unique(a[:, 0:1])
answer = []
for element in unique:
    present = a[:,0]==element
    answer.append(np.extract(present,a[:,-1]))
print (answer)

[array([275, 441, 494, 593]), array([679, 533, 686]), array([559, 219, 455]), array([605, 468, 692, 613])]

查看更多
够拽才男人
7楼-- · 2020-01-24 13:49

Numpy is not very handy here because the desired output is not an array of integers (it is an array of list objects).

I suggest either the pure Python way...

from collections import defaultdict

%%timeit
d = defaultdict(list)
for key, val in a:
    d[key].append(val)
10.7 µs ± 156 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

# result:
defaultdict(list,
        {1: [275, 441, 494, 593],
         2: [679, 533, 686],
         3: [559, 219, 455],
         4: [605, 468, 692, 613]})

...or the pandas way:

import pandas as pd

%%timeit
df = pd.DataFrame(a, columns=["key", "val"])
df.groupby("key").val.apply(pd.Series.tolist)
979 µs ± 3.3 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

# result:
key
1    [275, 441, 494, 593]
2         [679, 533, 686]
3         [559, 219, 455]
4    [605, 468, 692, 613]
Name: val, dtype: object
查看更多
登录 后发表回答