What's the fastest way in Python to calculate

2020-01-24 11:00发布

Given a sparse matrix listing, what's the best way to calculate the cosine similarity between each of the columns (or rows) in the matrix? I would rather not iterate n-choose-two times.

Say the input matrix is:

A= 
[0 1 0 0 1
 0 0 1 1 1
 1 1 0 1 0]

The sparse representation is:

A = 
0, 1
0, 4
1, 2
1, 3
1, 4
2, 0
2, 1
2, 3

In Python, it's straightforward to work with the matrix-input format:

import numpy as np
from sklearn.metrics import pairwise_distances
from scipy.spatial.distance import cosine

A = np.array(
[[0, 1, 0, 0, 1],
[0, 0, 1, 1, 1],
[1, 1, 0, 1, 0]])

dist_out = 1-pairwise_distances(A, metric="cosine")
dist_out

Gives:

array([[ 1.        ,  0.40824829,  0.40824829],
       [ 0.40824829,  1.        ,  0.33333333],
       [ 0.40824829,  0.33333333,  1.        ]])

That's fine for a full-matrix input, but I really want to start with the sparse representation (due to the size and sparsity of my matrix). Any ideas about how this could best be accomplished? Thanks in advance.

9条回答
不美不萌又怎样
2楼-- · 2020-01-24 11:11

You should check out scipy.sparse (link). You can apply operations on those sparse matrices just like how you use a normal matrix.

查看更多
叛逆
3楼-- · 2020-01-24 11:12

You can compute pairwise cosine similarity on the rows of a sparse matrix directly using sklearn. As of version 0.17 it also supports sparse output:

from sklearn.metrics.pairwise import cosine_similarity
from scipy import sparse

A =  np.array([[0, 1, 0, 0, 1], [0, 0, 1, 1, 1],[1, 1, 0, 1, 0]])
A_sparse = sparse.csr_matrix(A)

similarities = cosine_similarity(A_sparse)
print('pairwise dense output:\n {}\n'.format(similarities))

#also can output sparse matrices
similarities_sparse = cosine_similarity(A_sparse,dense_output=False)
print('pairwise sparse output:\n {}\n'.format(similarities_sparse))

Results:

pairwise dense output:
[[ 1.          0.40824829  0.40824829]
[ 0.40824829  1.          0.33333333]
[ 0.40824829  0.33333333  1.        ]]

pairwise sparse output:
(0, 1)  0.408248290464
(0, 2)  0.408248290464
(0, 0)  1.0
(1, 0)  0.408248290464
(1, 2)  0.333333333333
(1, 1)  1.0
(2, 1)  0.333333333333
(2, 0)  0.408248290464
(2, 2)  1.0

If you want column-wise cosine similarities simply transpose your input matrix beforehand:

A_sparse.transpose()
查看更多
看我几分像从前
4楼-- · 2020-01-24 11:15

The following method is about 30 times faster than scipy.spatial.distance.pdist. It works pretty quickly on large matrices (assuming you have enough RAM)

See below for a discussion of how to optimize for sparsity.

# base similarity matrix (all dot products)
# replace this with A.dot(A.T).toarray() for sparse representation
similarity = numpy.dot(A, A.T)


# squared magnitude of preference vectors (number of occurrences)
square_mag = numpy.diag(similarity)

# inverse squared magnitude
inv_square_mag = 1 / square_mag

# if it doesn't occur, set it's inverse magnitude to zero (instead of inf)
inv_square_mag[numpy.isinf(inv_square_mag)] = 0

# inverse of the magnitude
inv_mag = numpy.sqrt(inv_square_mag)

# cosine similarity (elementwise multiply by inverse magnitudes)
cosine = similarity * inv_mag
cosine = cosine.T * inv_mag

If your problem is typical for large scale binary preference problems, you have a lot more entries in one dimension than the other. Also, the short dimension is the one whose entries you want to calculate similarities between. Let's call this dimension the 'item' dimension.

If this is the case, list your 'items' in rows and create A using scipy.sparse. Then replace the first line as indicated.

If your problem is atypical you'll need more modifications. Those should be pretty straightforward replacements of basic numpy operations with their scipy.sparse equivalents.

查看更多
别忘想泡老子
5楼-- · 2020-01-24 11:18

I have tried some methods above. However, the experiment by @zbinsd has its limitation. The sparsity of matrix used in the experiment is extremely low while the real sparsity is usually over 90%. In my condition, the sparse is with the shape of (7000, 25000) and the sparsity of 97%. The method 4 is extremely slow and I can't tolerant getting the results. I use the method 6 which is finished in 10 s. Amazingly, I try the method below and it's finished in only 0.247 s.

import sklearn.preprocessing as pp

def cosine_similarities(mat):
    col_normed_mat = pp.normalize(mat.tocsc(), axis=0)
    return col_normed_mat.T * col_normed_mat

This efficient method is linked by enter link description here

查看更多
【Aperson】
6楼-- · 2020-01-24 11:18
def norm(vector):
    return sqrt(sum(x * x for x in vector))    

def cosine_similarity(vec_a, vec_b):
        norm_a = norm(vec_a)
        norm_b = norm(vec_b)
        dot = sum(a * b for a, b in zip(vec_a, vec_b))
        return dot / (norm_a * norm_b)

This method seems to be somewhat faster than using sklearn's implementation if you pass in one pair of vectors at a time.

查看更多
一夜七次
7楼-- · 2020-01-24 11:25

Building off of Vaali's solution:

def sparse_cosine_similarity(sparse_matrix):
    out = (sparse_matrix.copy() if type(sparse_matrix) is csr_matrix else
           sparse_matrix.tocsr())
    squared = out.multiply(out)
    sqrt_sum_squared_rows = np.array(np.sqrt(squared.sum(axis=1)))[:, 0]
    row_indices, col_indices = out.nonzero()
    out.data /= sqrt_sum_squared_rows[row_indices]
    return out.dot(out.T)

This takes a sparse matrix (preferably a csr_matrix) and returns a csr_matrix. It should do the more intensive parts using sparse calculations with pretty minimal memory overhead. I haven't tested it extensively though, so caveat emptor (Update: I feel confident in this solution now that I've tested and benchmarked it)

Also, here is the sparse version of Waylon's solution in case it helps anyone, not sure which solution is actually better.

def sparse_cosine_similarity_b(sparse_matrix):
    input_csr_matrix = sparse_matrix.tocsr()
    similarity = input_csr_matrix * input_csr_matrix.T
    square_mag = similarity.diagonal()
    inv_square_mag = 1 / square_mag
    inv_square_mag[np.isinf(inv_square_mag)] = 0
    inv_mag = np.sqrt(inv_square_mag)
    return similarity.multiply(inv_mag).T.multiply(inv_mag)

Both solutions seem to have parity with sklearn.metrics.pairwise.cosine_similarity

:-D

Update:

Now I have tested both solutions against my existing Cython implementation: https://github.com/davidmashburn/sparse_dot/blob/master/test/benchmarks_v3_output_table.txt and it looks like the first algorithm performs the best of the three most of the time.

查看更多
登录 后发表回答