i have a dataframe with a parquet file and I have to add a new column with some random data, but I need that random data different each other. This is my actual code and the current version of spark is 1.5.1-cdh-5.5.2:
val mydf = sqlContext.read.parquet("some.parquet")
// mydf.count()
// 63385686
mydf.cache
val r = scala.util.Random
import org.apache.spark.sql.functions.udf
def myNextPositiveNumber :String = { (r.nextInt(Integer.MAX_VALUE) + 1 ).toString.concat("D")}
val myFunction = udf(myNextPositiveNumber _)
val myNewDF = mydf.withColumn("myNewColumn",lit(myNextPositiveNumber))
with this code, I have this data:
scala> myNewDF.select("myNewColumn").show(10,false)
+-----------+
|myNewColumn|
+-----------+
|889488717D |
|889488717D |
|889488717D |
|889488717D |
|889488717D |
|889488717D |
|889488717D |
|889488717D |
|889488717D |
|889488717D |
+-----------+
It looks like that the udf myNextPositiveNumber is invoked only once, isn't?
update confirmed, there is only one distinct value:
scala> myNewDF.select("myNewColumn").distinct.show(50,false)
17/02/21 13:23:11 WARN ParquetRecordReader: Can not initialize counter due to context is not a instance of TaskInputOutputContext, but is org.apache.hadoop.mapreduce.task.TaskAttemptContextImpl
17/02/21 13:23:11 WARN ParquetRecordReader: Can not initialize counter due to context is not a instance of TaskInputOutputContext, but is org.apache.hadoop.mapreduce.task.TaskAttemptContextImpl
17/02/21 13:23:11 WARN ParquetRecordReader: Can not initialize counter due to context is not a instance of TaskInputOutputContext, but is org.apache.hadoop.mapreduce.task.TaskAttemptContextImpl
17/02/21 13:23:11 WARN ParquetRecordReader: Can not initialize counter due to context is not a instance of TaskInputOutputContext, but is org.apache.hadoop.mapreduce.task.TaskAttemptContextImpl
17/02/21 13:23:11 WARN ParquetRecordReader: Can not initialize counter due to context is not a instance of TaskInputOutputContext, but is org.apache.hadoop.mapreduce.task.TaskAttemptContextImpl
17/02/21 13:23:11 WARN ParquetRecordReader: Can not initialize counter due to context is not a instance of TaskInputOutputContext, but is org.apache.hadoop.mapreduce.task.TaskAttemptContextImpl
17/02/21 13:23:11 WARN ParquetRecordReader: Can not initialize counter due to context is not a instance of TaskInputOutputContext, but is org.apache.hadoop.mapreduce.task.TaskAttemptContextImpl
...
+-----------+
|myNewColumn|
+-----------+
|889488717D |
+-----------+
what do I am doing wrong?
Update 2: finally, with the help of @user6910411 I have this code:
val mydf = sqlContext.read.parquet("some.parquet")
// mydf.count()
// 63385686
mydf.cache
val r = scala.util.Random
import org.apache.spark.sql.functions.udf
val accum = sc.accumulator(1)
def myNextPositiveNumber():String = {
accum+=1
accum.value.toString.concat("D")
}
val myFunction = udf(myNextPositiveNumber _)
val myNewDF = mydf.withColumn("myNewColumn",lit(myNextPositiveNumber))
myNewDF.select("myNewColumn").count
// 63385686
update 3
Actual code generates data like this:
scala> mydf.select("myNewColumn").show(5,false)
17/02/22 11:01:57 WARN ParquetRecordReader: Can not initialize counter due to context is not a instance of TaskInputOutputContext, but is org.apache.hadoop.mapreduce.task.TaskAttemptContextImpl
+-----------+
|myNewColumn|
+-----------+
|2D |
|2D |
|2D |
|2D |
|2D |
+-----------+
only showing top 5 rows
It looks like the udf function is invoked only once, isn't? I need a new random element in that column.
update 4 @user6910411
i have this actual code that increases the id but it is not concatenating the final char, it is weird. This is my code:
import org.apache.spark.sql.functions.udf
val mydf = sqlContext.read.parquet("some.parquet")
mydf.cache
def myNextPositiveNumber():String = monotonically_increasing_id().toString().concat("D")
val myFunction = udf(myNextPositiveNumber _)
val myNewDF = mydf.withColumn("myNewColumn",expr(myNextPositiveNumber))
scala> myNewDF.select("myNewColumn").show(5,false)
17/02/22 12:00:02 WARN Executor: 1 block locks were not released by TID = 1:
[rdd_4_0]
+-----------+
|myNewColumn|
+-----------+
|0 |
|1 |
|2 |
|3 |
|4 |
+-----------+
I need something like:
+-----------+
|myNewColumn|
+-----------+
|1D |
|2D |
|3D |
|4D |
+-----------+
Spark >= 2.3
It is possible to disable some optimizations using
asNondeterministic
method:Please make sure you understand the guarantees before using this option.
Spark < 2.3
Function which is passed to udf should be deterministic (with possible exception of SPARK-20586) and nullary functions calls can be replaced by constants. If you want to generate random numbers use on of the built-in functions:
rand
- Generate a random column with independent and identically distributed (i.i.d.) samples from U[0.0, 1.0].randn
- Generate a column with independent and identically distributed (i.i.d.) samples from the standard normal distribution.and transform the output to obtain required distribution for example:
You can make use of
monotonically_increasing_id
to generate random values.Then you can define a UDF to append any string to it after casting it to String as
monotonically_increasing_id
returns Long by default.