When is std::weak_ptr useful?

2020-01-24 03:26发布

I started studying smart pointers of C++11 and I don't see any useful use of std::weak_ptr. Can someone tell me when std::weak_ptr is useful/necessary?

13条回答
Emotional °昔
2楼-- · 2020-01-24 03:41

Here's one example, given to me by @jleahy: Suppose you have a collection of tasks, executed asynchronously, and managed by an std::shared_ptr<Task>. You may want to do something with those tasks periodically, so a timer event may traverse a std::vector<std::weak_ptr<Task>> and give the tasks something to do. However, simultaneously a task may have concurrently decided that it is no longer needed and die. The timer can thus check whether the task is still alive by making a shared pointer from the weak pointer and using that shared pointer, provided it isn't null.

查看更多
Emotional °昔
3楼-- · 2020-01-24 03:42

http://en.cppreference.com/w/cpp/memory/weak_ptr std::weak_ptr is a smart pointer that holds a non-owning ("weak") reference to an object that is managed by std::shared_ptr. It must be converted to std::shared_ptr in order to access the referenced object.

std::weak_ptr models temporary ownership: when an object needs to be accessed only if it exists, and it may be deleted at any time by someone else, std::weak_ptr is used to track the object, and it is converted to std::shared_ptr to assume temporary ownership. If the original std::shared_ptr is destroyed at this time, the object's lifetime is extended until the temporary std::shared_ptr is destroyed as well.

In addition, std::weak_ptr is used to break circular references of std::shared_ptr.

查看更多
成全新的幸福
4楼-- · 2020-01-24 03:43

shared_ptr : holds the real object.

weak_ptr : uses lock to connect to the real owner or returns a NULL shared_ptr otherwise.

weak ptr

Roughly speaking, weak_ptr role is similar to the role of housing agency. Without agents, to get a house on rent we may have to check random houses in the city. The agents make sure that we visit only those houses which are still accessible and available for rent.

查看更多
仙女界的扛把子
5楼-- · 2020-01-24 03:43

There is a drawback of shared pointer: shared_pointer can't handle the parent-child cycle dependency. Means if the parent class uses the object of child class using a shared pointer, in the same file if child class uses the object of the parent class. The shared pointer will be failed to destruct all objects, even shared pointer is not at all calling the destructor in cycle dependency scenario. basically shared pointer doesn't support the reference count mechanism.

This drawback we can overcome using weak_pointer.

查看更多
▲ chillily
6楼-- · 2020-01-24 03:46

When using pointers it's important to understand the different types of pointers available and when it makes sense to use each one. There are four types of pointers in two categories as follows:

  • Raw pointers:
    • Raw Pointer [ i.e. SomeClass* ptrToSomeClass = new SomeClass(); ]
  • Smart pointers:
    • Unique Pointers [ i.e.
      std::unique_ptr<SomeClass> uniquePtrToSomeClass ( new SomeClass() );
      ]
    • Shared Pointers [ i.e.
      std::shared_ptr<SomeClass> sharedPtrToSomeClass ( new SomeClass() );
      ]
    • Weak Pointers [ i.e.
      std::weak_ptr<SomeClass> weakPtrToSomeWeakOrSharedPtr ( weakOrSharedPtr );
      ]

Raw pointers (sometimes referred to as "legacy pointers", or "C pointers") provide 'bare-bones' pointer behavior and are a common source of bugs and memory leaks. Raw pointers provide no means for keeping track of ownership of the resource and developers must call 'delete' manually to ensure they are not creating a memory leak. This becomes difficult if the resource is shared as it can be challenging to know whether any objects are still pointing to the resource. For these reasons, raw pointers should generally be avoided and only used in performance-critical sections of the code with limited scope.

Unique pointers are a basic smart pointer that 'owns' the underlying raw pointer to the resource and is responsible for calling delete and freeing the allocated memory once the object that 'owns' the unique pointer goes out of scope. The name 'unique' refers to the fact that only one object may 'own' the unique pointer at a given point in time. Ownership may be transferred to another object via the move command, but a unique pointer can never be copied or shared. For these reasons, unique pointers are a good alternative to raw pointers in the case that only one object needs the pointer at a given time, and this alleviates the developer from the need to free memory at the end of the owning object's lifecycle.

Shared pointers are another type of smart pointer that are similar to unique pointers, but allow for many objects to have ownership over the shared pointer. Like unique pointer, shared pointers are responsible for freeing the allocated memory once all objects are done pointing to the resource. It accomplishes this with a technique called reference counting. Each time a new object takes ownership of the shared pointer the reference count is incremented by one. Similarly, when an object goes out of scope or stops pointing to the resource, the reference count is decremented by one. When the reference count reaches zero, the allocated memory is freed. For these reasons, shared pointers are a very powerful type of smart pointer that should be used anytime multiple objects need to point to the same resource.

Finally, weak pointers are another type of smart pointer that, rather than pointing to a resource directly, they point to another pointer (weak or shared). Weak pointers can't access an object directly, but they can tell whether the object still exists or if it has expired. A weak pointer can be temporarily converted to a shared pointer to access the pointed-to object (provided it still exists). To illustrate, consider the following example:

  • You are busy and have overlapping meetings: Meeting A and Meeting B
  • You decide to go to Meeting A and your co-worker goes to Meeting B
  • You tell your co-worker that if Meeting B is still going after Meeting A ends, you will join
  • The following two scenarios could play out:
    • Meeting A ends and Meeting B is still going, so you join
    • Meeting A ends and Meeting B has also ended, so you can't join

In the example, you have a weak pointer to Meeting B. You are not an "owner" in Meeting B so it can end without you, and you do not know whether it ended or not unless you check. If it hasn't ended, you can join and participate, otherwise, you cannot. This is different than having a shared pointer to Meeting B because you would then be an "owner" in both Meeting A and Meeting B (participating in both at the same time).

The example illustrates how a weak pointer works and is useful when an object needs to be an outside observer, but does not want the responsibility of sharing ownership. This is particularly useful in the scenario that two objects need to point to each other (a.k.a. a circular reference). With shared pointers, neither object can be released because they are still 'strongly' pointed to by the other object. When one of the pointers is a weak pointer, the object holding the weak pointer can still access the other object when needed, provided it still exists.

查看更多
狗以群分
7楼-- · 2020-01-24 03:48

Another answer, hopefully simpler. (for fellow googlers)

Suppose you have Team and Member objects.

Obviously it's a relationship : the Team object will have pointers to its Members. And it's likely that the members will also have a back pointer to their Team object.

Then you have a dependency cycle. If you use shared_ptr, objects will no longer be automatically freed when you abandon reference on them, because they reference each other in a cyclic way. This is a memory leak.

You break this by using weak_ptr. The "owner" typically use shared_ptr and the "owned" use a weak_ptr to its parent, and convert it temporarily to shared_ptr when it needs access to its parent.

Store a weak ptr :

weak_ptr<Parent> parentWeakPtr_ = parentSharedPtr; // automatic conversion to weak from shared

then use it when needed

shared_ptr<Parent> tempParentSharedPtr = parentWeakPtr_.lock(); // on the stack, from the weak ptr
if( !tempParentSharedPtr ) {
  // yes, it may fail if the parent was freed since we stored weak_ptr
} else {
  // do stuff
}
// tempParentSharedPtr is released when it goes out of scope
查看更多
登录 后发表回答