How is CountDownLatch used in Java Multithreading?

2020-01-23 04:23发布

Can someone help me to understand what Java CountDownLatch is and when to use it?

I don't have a very clear idea of how this program works. As I understand all three threads start at once and each Thread will call CountDownLatch after 3000ms. So count down will decrement one by one. After latch becomes zero the program prints "Completed". Maybe the way I understood is incorrect.

import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

class Processor implements Runnable {
    private CountDownLatch latch;

    public Processor(CountDownLatch latch) {
        this.latch = latch;
    }

    public void run() {
        System.out.println("Started.");

        try {
            Thread.sleep(3000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }

        latch.countDown();
    }
}

// -----------------------------------------------------

public class App {

    public static void main(String[] args) {

        CountDownLatch latch = new CountDownLatch(3); // coundown from 3 to 0

        ExecutorService executor = Executors.newFixedThreadPool(3); // 3 Threads in pool

        for(int i=0; i < 3; i++) {
            executor.submit(new Processor(latch)); // ref to latch. each time call new Processes latch will count down by 1
        }

        try {
            latch.await();  // wait until latch counted down to 0
        } catch (InterruptedException e) {
            e.printStackTrace();
        }

        System.out.println("Completed.");
    }

}

12条回答
Deceive 欺骗
2楼-- · 2020-01-23 05:21

If you add some debug after your call to latch.countDown(), this may help you understand its behaviour better.

latch.countDown();
System.out.println("DONE "+this.latch); // Add this debug

The output will show the Count being decremented. This 'count' is effectively the number of Runnable tasks (Processor objects) you've started against which countDown() has not been invoked and hence is blocked the main thread on its call to latch.await().

DONE java.util.concurrent.CountDownLatch@70e69696[Count = 2]
DONE java.util.concurrent.CountDownLatch@70e69696[Count = 1]
DONE java.util.concurrent.CountDownLatch@70e69696[Count = 0]
查看更多
smile是对你的礼貌
3楼-- · 2020-01-23 05:21

Best real time Example for countDownLatch explained in this link CountDownLatchExample

查看更多
乱世女痞
4楼-- · 2020-01-23 05:24

CountDownLatch in Java is a type of synchronizer which allows one Thread to wait for one or more Threads before it starts processing.

CountDownLatch works on latch principle, thread will wait until gate is open. One thread waits for n number of threads specified while creating CountDownLatch.

e.g. final CountDownLatch latch = new CountDownLatch(3);

Here we set the counter to 3.

Any thread, usually main thread of application, which calls CountDownLatch.await() will wait until count reaches zero or it's interrupted by another Thread. All other threads are required to do count down by calling CountDownLatch.countDown() once they are completed or ready to the job. as soon as count reaches zero, the Thread awaiting starts running.

Here the count is get decremented by CountDownLatch.countDown() method.

The Thread which calls the await() method will wait until the initial count reaches to zero.

To make count zero other threads need to call the countDown() method. Once the count become zero the thread which invoked the await() method will resume (start its execution).

The disadvantage of CountDownLatch is that it's not reusable: once the count become zero it is no longer usable.

查看更多
倾城 Initia
5楼-- · 2020-01-23 05:25

NikolaB explained it very well, However example would be helpful to understand, So here is one simple example...

 import java.util.concurrent.*;


  public class CountDownLatchExample {

  public static class ProcessThread implements Runnable {

    CountDownLatch latch;
    long workDuration;
    String name;

    public ProcessThread(String name, CountDownLatch latch, long duration){
        this.name= name;
        this.latch = latch;
        this.workDuration = duration;
    }


    public void run() {
        try {
            System.out.println(name +" Processing Something for "+ workDuration/1000 + " Seconds");
            Thread.sleep(workDuration);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        System.out.println(name+ "completed its works");
        //when task finished.. count down the latch count...

        // basically this is same as calling lock object notify(), and object here is latch
        latch.countDown();
    }
}


public static void main(String[] args) {
    // Parent thread creating a latch object
    CountDownLatch latch = new CountDownLatch(3);

    new Thread(new ProcessThread("Worker1",latch, 2000)).start(); // time in millis.. 2 secs
    new Thread(new ProcessThread("Worker2",latch, 6000)).start();//6 secs
    new Thread(new ProcessThread("Worker3",latch, 4000)).start();//4 secs


    System.out.println("waiting for Children processes to complete....");
    try {
        //current thread will get notified if all chidren's are done 
        // and thread will resume from wait() mode.
        latch.await();
    } catch (InterruptedException e) {
        e.printStackTrace();
    }

    System.out.println("All Process Completed....");

    System.out.println("Parent Thread Resuming work....");



     }
  }
查看更多
时光不老,我们不散
6楼-- · 2020-01-23 05:25

As mentioned in JavaDoc (https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/CountDownLatch.html), CountDownLatch is a synchronization aid, introduced in Java 5. Here the synchronization does not mean restricting access to a critical section. But rather sequencing actions of different threads. The type of synchronization achieved through CountDownLatch is similar to that of Join. Assume that there is a thread "M" which needs to wait for other worker threads "T1", "T2", "T3" to complete its tasks Prior to Java 1.5, the way this can be done is, M running the following code

    T1.join();
    T2.join();
    T3.join();

The above code makes sure that thread M resumes its work after T1, T2, T3 completes its work. T1, T2, T3 can complete their work in any order. The same can be achieved through CountDownLatch, where T1,T2, T3 and thread M share same CountDownLatch object.
"M" requests : countDownLatch.await();
where as "T1","T2","T3" does countDownLatch.countdown();

One disadvantage with the join method is that M has to know about T1, T2, T3. If there is a new worker thread T4 added later, then M has to be aware of it too. This can be avoided with CountDownLatch. After implementation the sequence of action would be [T1,T2,T3](the order of T1,T2,T3 could be anyway) -> [M]

查看更多
贼婆χ
7楼-- · 2020-01-23 05:28

One good example of when to use something like this is with Java Simple Serial Connector, accessing serial ports. Typically you'll write something to the port, and asyncronously, on another thread, the device will respond on a SerialPortEventListener. Typically, you'll want to pause after writing to the port to wait for the response. Handling the thread locks for this scenario manually is extremely tricky, but using Countdownlatch is easy. Before you go thinking you can do it another way, be careful about race conditions you never thought of!!

Pseudocode:

CountDownLatch latch;
void writeData() { 
   latch = new CountDownLatch(1);
   serialPort.writeBytes(sb.toString().getBytes())
   try {
      latch.await(4, TimeUnit.SECONDS);
    } catch (InterruptedException e) {
   }
}
class SerialPortReader implements SerialPortEventListener {
    public void serialEvent(SerialPortEvent event) {
        if(event.isRXCHAR()){//If data is available
            byte buffer[] = serialPort.readBytes(event.getEventValue());
            latch.countDown();
         }
     }
}

查看更多
登录 后发表回答