How does the @property decorator work?

2020-01-22 11:03发布

I would like to understand how the built-in function property works. What confuses me is that property can also be used as a decorator, but it only takes arguments when used as a built-in function and not when used as a decorator.

This example is from the documentation:

class C(object):
    def __init__(self):
        self._x = None

    def getx(self):
        return self._x
    def setx(self, value):
        self._x = value
    def delx(self):
        del self._x
    x = property(getx, setx, delx, "I'm the 'x' property.")

property's arguments are getx, setx, delx and a doc string.

In the code below property is used as decorator. The object of it is the x function, but in the code above there is no place for an object function in the arguments.

class C(object):
    def __init__(self):
        self._x = None

    @property
    def x(self):
        """I'm the 'x' property."""
        return self._x

    @x.setter
    def x(self, value):
        self._x = value

    @x.deleter
    def x(self):
        del self._x

And, how are the x.setter and x.deleter decorators created? I am confused.

13条回答
爷的心禁止访问
2楼-- · 2020-01-22 11:27

This point is been cleared by many people up there but here is a direct point which I was searching. This is what I feel is important to start with the @property decorator. eg:-

class UtilityMixin():
    @property
    def get_config(self):
        return "This is property"

The calling of function "get_config()" will work like this.

util = UtilityMixin()
print(util.get_config)

If you notice I have not used "()" brackets for calling the function. This is the basic thing which I was searching for the @property decorator. So that you can use your function just like a variable.

查看更多
贼婆χ
3楼-- · 2020-01-22 11:29

Documentation says it's just a shortcut for creating readonly properties. So

@property
def x(self):
    return self._x

is equivalent to

def getx(self):
    return self._x
x = property(getx)
查看更多
我想做一个坏孩纸
4楼-- · 2020-01-22 11:29

Below is another example on how @property can help when one has to refactor code which is taken from here (I only summarize it below):

Imagine you created a class Money like this:

class Money:
    def __init__(self, dollars, cents):
        self.dollars = dollars
        self.cents = cents

and an user creates a library depending on this class where he/she uses e.g.

money = Money(27, 12)

print("I have {} dollar and {} cents.".format(money.dollars, money.cents))
# prints I have 27 dollar and 12 cents.

Now let's suppose you decide to change your Money class and get rid of the dollars and cents attributes but instead decide to only track the total amount of cents:

class Money:
    def __init__(self, dollars, cents):
        self.total_cents = dollars * 100 + cents

If the above mentioned user now tries to run his/her library as before

money = Money(27, 12)

print("I have {} dollar and {} cents.".format(money.dollars, money.cents))

it will result in an error

AttributeError: 'Money' object has no attribute 'dollars'

That means that now everyone who relies on your original Money class would have to change all lines of code where dollars and cents are used which can be very painful... So, how could this be avoided? By using @property!

That is how:

class Money:
    def __init__(self, dollars, cents):
        self.total_cents = dollars * 100 + cents

    # Getter and setter for dollars...
    @property
    def dollars(self):
        return self.total_cents // 100

    @dollars.setter
    def dollars(self, new_dollars):
        self.total_cents = 100 * new_dollars + self.cents

    # And the getter and setter for cents.
    @property
    def cents(self):
        return self.total_cents % 100

    @cents.setter
    def cents(self, new_cents):
        self.total_cents = 100 * self.dollars + new_cents

when we now call from our library

money = Money(27, 12)

print("I have {} dollar and {} cents.".format(money.dollars, money.cents))
# prints I have 27 dollar and 12 cents.

it will work as expected and we did not have to change a single line of code in our library! In fact, we would not even have to know that the library we depend on changed.

Also the setter works fine:

money.dollars += 2
print("I have {} dollar and {} cents.".format(money.dollars, money.cents))
# prints I have 29 dollar and 12 cents.

money.cents += 10
print("I have {} dollar and {} cents.".format(money.dollars, money.cents))
# prints I have 29 dollar and 22 cents.

You can use @property also in abstract classes; I give a minimal example here.

查看更多
Juvenile、少年°
5楼-- · 2020-01-22 11:30

Here is another example:

##
## Python Properties Example
##
class GetterSetterExample( object ):
    ## Set the default value for x ( we reference it using self.x, set a value using self.x = value )
    __x = None


##
## On Class Initialization - do something... if we want..
##
def __init__( self ):
    ## Set a value to __x through the getter / setter... Since __x is defined above, this doesn't need to be set...
    self.x = 1234

    return None


##
## Define x as a property, ie a getter - All getters should have a default value arg, so I added it - it will not be passed in when setting a value, so you need to set the default here so it will be used..
##
@property
def x( self, _default = None ):
    ## I added an optional default value argument as all getters should have this - set it to the default value you want to return...
    _value = ( self.__x, _default )[ self.__x == None ]

    ## Debugging - so you can see the order the calls are made...
    print( '[ Test Class ] Get x = ' + str( _value ) )

    ## Return the value - we are a getter afterall...
    return _value


##
## Define the setter function for x...
##
@x.setter
def x( self, _value = None ):
    ## Debugging - so you can see the order the calls are made...
    print( '[ Test Class ] Set x = ' + str( _value ) )

    ## This is to show the setter function works.... If the value is above 0, set it to a negative value... otherwise keep it as is ( 0 is the only non-negative number, it can't be negative or positive anyway )
    if ( _value > 0 ):
        self.__x = -_value
    else:
        self.__x = _value


##
## Define the deleter function for x...
##
@x.deleter
def x( self ):
    ## Unload the assignment / data for x
    if ( self.__x != None ):
        del self.__x


##
## To String / Output Function for the class - this will show the property value for each property we add...
##
def __str__( self ):
    ## Output the x property data...
    print( '[ x ] ' + str( self.x ) )


    ## Return a new line - technically we should return a string so it can be printed where we want it, instead of printed early if _data = str( C( ) ) is used....
    return '\n'

##
##
##
_test = GetterSetterExample( )
print( _test )

## For some reason the deleter isn't being called...
del _test.x

Basically, the same as the C( object ) example except I'm using x instead... I also don't initialize in __init - ... well.. I do, but it can be removed because __x is defined as part of the class....

The output is:

[ Test Class ] Set x = 1234
[ Test Class ] Get x = -1234
[ x ] -1234

and if I comment out the self.x = 1234 in init then the output is:

[ Test Class ] Get x = None
[ x ] None

and if I set the _default = None to _default = 0 in the getter function ( as all getters should have a default value but it isn't passed in by the property values from what I've seen so you can define it here, and it actually isn't bad because you can define the default once and use it everywhere ) ie: def x( self, _default = 0 ):

[ Test Class ] Get x = 0
[ x ] 0

Note: The getter logic is there just to have the value be manipulated by it to ensure it is manipulated by it - the same for the print statements...

Note: I'm used to Lua and being able to dynamically create 10+ helpers when I call a single function and I made something similar for Python without using properties and it works to a degree, but, even though the functions are being created before being used, there are still issues at times with them being called prior to being created which is strange as it isn't coded that way... I prefer the flexibility of Lua meta-tables and the fact I can use actual setters / getters instead of essentially directly accessing a variable... I do like how quickly some things can be built with Python though - for instance gui programs. although one I am designing may not be possible without a lot of additional libraries - if I code it in AutoHotkey I can directly access the dll calls I need, and the same can be done in Java, C#, C++, and more - maybe I haven't found the right thing yet but for that project I may switch from Python..

Note: The code output in this forum is broken - I had to add spaces to the first part of the code for it to work - when copy / pasting ensure you convert all spaces to tabs.... I use tabs for Python because in a file which is 10,000 lines the filesize can be 512KB to 1MB with spaces and 100 to 200KB with tabs which equates to a massive difference for file size, and reduction in processing time...

Tabs can also be adjusted per user - so if you prefer 2 spaces width, 4, 8 or whatever you can do it meaning it is thoughtful for developers with eye-sight deficits.

Note: All of the functions defined in the class aren't indented properly because of a bug in the forum software - ensure you indent it if you copy / paste

查看更多
小情绪 Triste *
6楼-- · 2020-01-22 11:32

The property() function returns a special descriptor object:

>>> property()
<property object at 0x10ff07940>

It is this object that has extra methods:

>>> property().getter
<built-in method getter of property object at 0x10ff07998>
>>> property().setter
<built-in method setter of property object at 0x10ff07940>
>>> property().deleter
<built-in method deleter of property object at 0x10ff07998>

These act as decorators too. They return a new property object:

>>> property().getter(None)
<property object at 0x10ff079f0>

that is a copy of the old object, but with one of the functions replaced.

Remember, that the @decorator syntax is just syntactic sugar; the syntax:

@property
def foo(self): return self._foo

really means the same thing as

def foo(self): return self._foo
foo = property(foo)

so foo the function is replaced by property(foo), which we saw above is a special object. Then when you use @foo.setter(), what you are doing is call that property().setter method I showed you above, which returns a new copy of the property, but this time with the setter function replaced with the decorated method.

The following sequence also creates a full-on property, by using those decorator methods.

First we create some functions and a property object with just a getter:

>>> def getter(self): print('Get!')
... 
>>> def setter(self, value): print('Set to {!r}!'.format(value))
... 
>>> def deleter(self): print('Delete!')
... 
>>> prop = property(getter)
>>> prop.fget is getter
True
>>> prop.fset is None
True
>>> prop.fdel is None
True

Next we use the .setter() method to add a setter:

>>> prop = prop.setter(setter)
>>> prop.fget is getter
True
>>> prop.fset is setter
True
>>> prop.fdel is None
True

Last we add a deleter with the .deleter() method:

>>> prop = prop.deleter(deleter)
>>> prop.fget is getter
True
>>> prop.fset is setter
True
>>> prop.fdel is deleter
True

Last but not least, the property object acts as a descriptor object, so it has .__get__(), .__set__() and .__delete__() methods to hook into instance attribute getting, setting and deleting:

>>> class Foo: pass
... 
>>> prop.__get__(Foo(), Foo)
Get!
>>> prop.__set__(Foo(), 'bar')
Set to 'bar'!
>>> prop.__delete__(Foo())
Delete!

The Descriptor Howto includes a pure Python sample implementation of the property() type:

class Property:
    "Emulate PyProperty_Type() in Objects/descrobject.c"

    def __init__(self, fget=None, fset=None, fdel=None, doc=None):
        self.fget = fget
        self.fset = fset
        self.fdel = fdel
        if doc is None and fget is not None:
            doc = fget.__doc__
        self.__doc__ = doc

    def __get__(self, obj, objtype=None):
        if obj is None:
            return self
        if self.fget is None:
            raise AttributeError("unreadable attribute")
        return self.fget(obj)

    def __set__(self, obj, value):
        if self.fset is None:
            raise AttributeError("can't set attribute")
        self.fset(obj, value)

    def __delete__(self, obj):
        if self.fdel is None:
            raise AttributeError("can't delete attribute")
        self.fdel(obj)

    def getter(self, fget):
        return type(self)(fget, self.fset, self.fdel, self.__doc__)

    def setter(self, fset):
        return type(self)(self.fget, fset, self.fdel, self.__doc__)

    def deleter(self, fdel):
        return type(self)(self.fget, self.fset, fdel, self.__doc__)
查看更多
叛逆
7楼-- · 2020-01-22 11:36

I read all the posts here and realized that we may need a real life example. Why, actually, we have @property? So, consider a Flask app where you use authentication system. You declare a model User in models.py:

class User(UserMixin, db.Model):
    __tablename__ = 'users'
    id = db.Column(db.Integer, primary_key=True)
    email = db.Column(db.String(64), unique=True, index=True)
    username = db.Column(db.String(64), unique=True, index=True)
    password_hash = db.Column(db.String(128))

    ...

    @property
    def password(self):
        raise AttributeError('password is not a readable attribute')

    @password.setter
    def password(self, password):
        self.password_hash = generate_password_hash(password)

    def verify_password(self, password):
        return check_password_hash(self.password_hash, password)

In this code we've "hidden" attribute password by using @property which triggers AttributeError assertion when you try to access it directly, while we used @property.setter to set the actual instance variable password_hash.

Now in auth/views.py we can instantiate a User with:

...
@auth.route('/register', methods=['GET', 'POST'])
def register():
    form = RegisterForm()
    if form.validate_on_submit():
        user = User(email=form.email.data,
                    username=form.username.data,
                    password=form.password.data)
        db.session.add(user)
        db.session.commit()
...

Notice attribute password that comes from a registration form when a user fills the form. Password confirmation happens on the front end with EqualTo('password', message='Passwords must match') (in case if you are wondering, but it's a different topic related Flask forms).

I hope this example will be useful

查看更多
登录 后发表回答