How can I profile C++ code running on Linux?

2020-01-22 10:19发布

I have a C++ application, running on Linux, which I'm in the process of optimizing. How can I pinpoint which areas of my code are running slowly?

17条回答
虎瘦雄心在
2楼-- · 2020-01-22 10:48

These are the two methods I use for speeding up my code:

For CPU bound applications:

  1. Use a profiler in DEBUG mode to identify questionable parts of your code
  2. Then switch to RELEASE mode and comment out the questionable sections of your code (stub it with nothing) until you see changes in performance.

For I/O bound applications:

  1. Use a profiler in RELEASE mode to identify questionable parts of your code.

N.B.

If you don't have a profiler, use the poor man's profiler. Hit pause while debugging your application. Most developer suites will break into assembly with commented line numbers. You're statistically likely to land in a region that is eating most of your CPU cycles.

For CPU, the reason for profiling in DEBUG mode is because if your tried profiling in RELEASE mode, the compiler is going to reduce math, vectorize loops, and inline functions which tends to glob your code into an un-mappable mess when it's assembled. An un-mappable mess means your profiler will not be able to clearly identify what is taking so long because the assembly may not correspond to the source code under optimization. If you need the performance (e.g. timing sensitive) of RELEASE mode, disable debugger features as needed to keep a usable performance.

For I/O-bound, the profiler can still identify I/O operations in RELEASE mode because I/O operations are either externally linked to a shared library (most of the time) or in the worst case, will result in a sys-call interrupt vector (which is also easily identifiable by the profiler).

查看更多
ゆ 、 Hurt°
3楼-- · 2020-01-22 10:49

This is a response to Nazgob's Gprof answer.

I've been using Gprof the last couple of days and have already found three significant limitations, one of which I've not seen documented anywhere else (yet):

  1. It doesn't work properly on multi-threaded code, unless you use a workaround

  2. The call graph gets confused by function pointers. Example: I have a function called multithread() which enables me to multi-thread a specified function over a specified array (both passed as arguments). Gprof however, views all calls to multithread() as equivalent for the purposes of computing time spent in children. Since some functions I pass to multithread() take much longer than others my call graphs are mostly useless. (To those wondering if threading is the issue here: no, multithread() can optionally, and did in this case, run everything sequentially on the calling thread only).

  3. It says here that "... the number-of-calls figures are derived by counting, not sampling. They are completely accurate...". Yet I find my call graph giving me 5345859132+784984078 as call stats to my most-called function, where the first number is supposed to be direct calls, and the second recursive calls (which are all from itself). Since this implied I had a bug, I put in long (64-bit) counters into the code and did the same run again. My counts: 5345859132 direct, and 78094395406 self-recursive calls. There are a lot of digits there, so I'll point out the recursive calls I measure are 78bn, versus 784m from Gprof: a factor of 100 different. Both runs were single threaded and unoptimised code, one compiled -g and the other -pg.

This was GNU Gprof (GNU Binutils for Debian) 2.18.0.20080103 running under 64-bit Debian Lenny, if that helps anyone.

查看更多
趁早两清
4楼-- · 2020-01-22 10:50

I assume you're using GCC. The standard solution would be to profile with gprof.

Be sure to add -pg to compilation before profiling:

cc -o myprog myprog.c utils.c -g -pg

I haven't tried it yet but I've heard good things about google-perftools. It is definitely worth a try.

Related question here.

A few other buzzwords if gprof does not do the job for you: Valgrind, Intel VTune, Sun DTrace.

查看更多
等我变得足够好
5楼-- · 2020-01-22 10:53

You can use the iprof library:

https://gitlab.com/Neurochrom/iprof

https://github.com/Neurochrom/iprof

It's cross-platform and allows you not to measure performance of your application also in real-time. You can even couple it with a live graph. Full disclaimer: I am the author.

查看更多
Summer. ? 凉城
6楼-- · 2020-01-22 10:55

I would use Valgrind and Callgrind as a base for my profiling tool suite. What is important to know is that Valgrind is basically a Virtual Machine:

(wikipedia) Valgrind is in essence a virtual machine using just-in-time (JIT) compilation techniques, including dynamic recompilation. Nothing from the original program ever gets run directly on the host processor. Instead, Valgrind first translates the program into a temporary, simpler form called Intermediate Representation (IR), which is a processor-neutral, SSA-based form. After the conversion, a tool (see below) is free to do whatever transformations it would like on the IR, before Valgrind translates the IR back into machine code and lets the host processor run it.

Callgrind is a profiler build upon that. Main benefit is that you don't have to run your aplication for hours to get reliable result. Even one second run is sufficient to get rock-solid, reliable results, because Callgrind is a non-probing profiler.

Another tool build upon Valgrind is Massif. I use it to profile heap memory usage. It works great. What it does is that it gives you snapshots of memory usage -- detailed information WHAT holds WHAT percentage of memory, and WHO had put it there. Such information is available at different points of time of application run.

查看更多
太酷不给撩
7楼-- · 2020-01-22 10:56

Also worth mentioning are

  1. HPCToolkit (http://hpctoolkit.org/) - Open-source, works for parallel programs and has a GUI with which to look at the results multiple ways
  2. Intel VTune (https://software.intel.com/en-us/vtune) - If you have intel compilers this is very good
  3. TAU (http://www.cs.uoregon.edu/research/tau/home.php)

I have used HPCToolkit and VTune and they are very effective at finding the long pole in the tent and do not need your code to be recompiled (except that you have to use -g -O or RelWithDebInfo type build in CMake to get meaningful output). I have heard TAU is similar in capabilities.

查看更多
登录 后发表回答