If i have a dataset consisting by a list of images each associated with a series of features; there is a model that, once trained, generates new images upon entering a new list of features?
相关问题
- how to define constructor for Python's new Nam
- streaming md5sum of contents of a large remote tar
- batch_dot with variable batch size in Keras
- How to get the background from multiple images by
- Evil ctypes hack in python
I think you are looking for GAN(Generative Adversarial Networks) which is proposed in this paper.
GAN are the type of algorithm which contains two different model so that one model named Discriminator tries to learn to determine if it's input data comes from the data set or not and the other one named Generator tries to learn how to generate data so that the Discriminator wrongly recognize that it comes from the data set.
You can find more details from the following links:
generative adversarial network (GAN)
Generative Adversarial Networks (GANs): Engine and Applications
GAN by Example using Keras on Tensorflow Backend